模具的激光修复(二)
1.3 激光修复模具工艺参数 <br> 激光修复伴随着传热、辐射、固化、分子取相及结晶等物理和化学变化,是个多参数过程。激光功率P、扫描速度、送粉量、熔池温度等都会对其产生影响。因此必须把参数合理地组合,以确保修复工作是在涂覆特性可知的情况下进行。在激光熔敷过程中,如果不采用特殊的工艺过程对基材的热输入量进行控制,将会使熔敷层与基体结合程度不理想,或在熔层表面和熔敷层与基材的过渡区产生裂纹。因此,合理地选择工艺参数是激光熔覆技术用于模具维修的关键因素。
<br> 根据物理冶金原理,熔敷材料和基体材料必须加热到足够高的温度才能满足实现冶金反应所无原则的条件,最终形成几何外形规则的熔敷层,根据经验,应尽可能使熔敷材料加热到较低的温度,这样可以减小熔敷裂纹、畸变倾向,也可避免熔敷材料的烧损和蒸发,需控制熔化材料的熔点(取基体、粉末材料两者最高熔点)Tm+(50-100)℃。参考温度场计逄,理论上P取值为1KW-2KW、为2mm/s-4mm/s可满足上述要求,至于熔覆层表面不平度,可通过调节送粉量实现其最小化。
<br> 2 试验方法
<br> 试验用横流连续波5kW-CO2激光器,光束模式为多模,光斑直径为4mm,基体材料(模具)为5CrMnMo钢,试样尺寸80mm×60mm×10mm,由于Ni合金粉流动性好,与基材相结合后表面光洁,价格适中,故选用了Ni60镍基合金粉末材料。试验选定激光功率P为1.5kW 。
<br> 3 试验结果分析
<br> 3. 1工艺参数对模具修复性能的影响
<br> 从熔覆层组织可以看出,激光与粉末材料相互作用充分,稀释率适中,在熔覆层内各层间组织与层内组织稍有差别,层内组织均匀细小致密,层间组织较粗大。由此可知,激光修复可以在相当宽的范围内获得组织均匀、细小致密和性能优异的修复层。测量1~3层硬度变化为85HV0.2。
<br> 试验结果表明,粉末在与激光相互作用时,如果激光功率P>5kW且扫描速度<1mm/s,基体因加热温度过高而被烧损,表面出现折皱以及气孔等质量问题。究其原因熔覆过程熔池内搅拌加剧,基体元素与金属粉末元素相互扩散严重,熔覆层开裂、变形敏感性明显上升。当激光功率P=1kW~2kW、扫描速度=2mm/s~4mm/s范围内均可得到较理想的激光熔覆层。此外,若加热温度过低无法充分熔化,难于达到修复模具的目的。扫描速度过大时出现熔覆层不连续现象,其结合强度不够。稀释率随扫描速度的增加,呈减小的趋势,而随送粉量的增大使稀释率有增加的趋势。
<br> 3.2 工艺参数对模具修复宏观形貌的影响
<br> 试验表明,在P和变化不大时,激光熔覆表面宏观形貌与送粉量关系密切,在其它条件相同的情况下,随的增大,熔覆层宽度有所变化(有变小的趋势),而熔覆层厚度明显增加,接触角加大。完全可以利用调节的方法改善熔覆层表面不平度。
<br> 4 结论
<br> 在激光修复模具过程中,通过理论计算并结合试验,在工艺参数P=1.5kW, gs1 =3.2mm/s ,=310mg/s,熔覆层厚度1mm~2mm,可以得到较理想的表面质量。为防止出现裂纹,可以对模具进行200℃×2h的预热处理。在修复过程中可以使用氢气侧吹保护激光熔覆部位。实际用于模具修复需要借助于激光修复系统的控制部分,不断调节送粉量,克服熔覆层表面的凹凸不平。
页:
[1]