HEATS 发表于 2010-9-12 08:54:08

精密体积成形模具的设计制造模具寿命(下)

<p>  6、合理制定模具钢的锻造规范</p>

<p>  根据碳化物偏析对模具寿命的影响,必须限制碳化物的不均匀度,对精密模具和负荷大的细长凸模,必须选用韧性好强度高的模具钢,碳化物不均匀度应控制为不大于3级。Cr12钢碳化物不均匀度3级要比5级耐用度提高1倍以上。滚丝模的碳化物不均匀度为5~6级时最多滚丝2000件,而碳化物不均匀度提高到1~2级时可滚丝550000件。如果碳化物偏析严重,可能引起过热、过烧、开裂、崩刃、塌陷、拉断等早期失效现象。带状、网状、大颗粒和大块堆集的碳化物使制成的模具性能呈各向异性,横向的强度低,塑性也差。根据显微硬度测量结果,碳化物正常分布处为740~760HV,碳化物集中处为920~940HV,碳化物稀少处为610~670HV,在碳化物稀少处易回火过度,使硬度和强度降低,碳化物富集区往往因回火不足,脆性大,而导致模具镦粗或断裂。通过锻造能有效改善工具钢的碳化物偏析,一般锻造后可降低碳化物偏析2级,最多为3级。最好采用轴向、径向反复镦拔(十字镦拔法),它是将原材料镦粗后沿断面中两个相互垂直的方向反复镦拔,最后再沿轴向或横向锻成,重复一次这一过程就叫做双十字镦拔,重复多次即为多次十字镦拔。?而对于直径小于或等于50mm的高合金钢,其碳化物不均匀性一般在4级以内,可满足一般模具使用要求。</p>

<p>  7、合理选择热处理工艺</p>

<p>  热处理不当是导致模具早期失效的重要原因,据某厂统计,其约占模具早期失效因素的35%。模具热处理包括锻造后的退火,粗加工以后高温回火或低温回火,精加工后的淬火与回火,电火花、线切割以后的去应力低温回火。只有冷热加工很好相互配合,才能保证良好的模具寿命。模具型腔大而壁薄时需要采用正常淬火温度的上限,以使残留奥氏体量增加,使模具不致胀大。快速加热法由于加热时间短,氧化脱碳倾向减少,晶粒细小,对碳素工具钢大型模具淬火变形小。对高速钢采用低淬、高回工艺比较好,淬火温度低,回火温度偏高,可大大提高韧性,尽管硬度有所降低,但对提高因折断或疲劳破坏的模具寿命极为有效。通常Cr12MoV钢淬火加热温度为1000℃,油冷,然后220℃回火。如能在这种热处理以前先行热处理一次,即加热至1100℃保温,油冷,700℃高温回火,则模具寿命能大幅度提高。我们在70年代初期对3Cr2W8V钢施行高淬、高回工艺热处理钢丝钳热锻模具也取得良好效果,寿命提高2倍多。采用低温氮碳共渗工艺,表面硬度可达1200HV,也能大大提高模具寿命。</p>

<p>  低温电解渗硫可降低金属变形时的摩擦力,提高抗咬粘性能。使用6W6Mo5Cr4V钢制作冷挤压凸模,经低温氮碳共渗后,使用寿命平均提高1倍以上,再经低温电解渗硫处理可以进一步提高寿命50%。模具淬火后存在很大的残留应力,它往往引起模具变形甚至开裂。为了减少残留应力,模具淬火后应趁热进行回火,回火应充分,回火不充分易产生磨前裂纹。对碳素工具钢,200℃回火1h,残留应力能消除约50%,回火2h残留应力能消除约75%~80%,而如果500~600℃回火1h,则残留应力能消除达90%。</p>

<p>  某厂CrWMn钢制凸模淬火后回火1h,使用不久便断裂,而当回火2.5h,使用中未发现断裂现象。这说明回火不均匀,虽然表面硬度达到要求,但工作内部组织不均匀,残留应力消除不充分,模具易早期破裂失效。</p>

<p>  回火后一般为空冷,在回火冷却过程中,材料内部可能会出现新的拉应力,应缓冷到100~120℃以后再出炉,或在高温回火后再加一次低温回火。表面覆层硬化技术中的PVD、CVD近年来获得较大的进展,在PVD中常用的真空蒸镀、真空溅射镀和离子镀,其中离子镀层具有附着力强、浇镀性好,沉积速度快,无公害等优点。离子镀工艺可在模具表面镀上TiC、TiN,其使用寿命可延长几倍到几十倍。离子镀是真空蒸膜与气体放电相结合的一种沉积技术。空心阴极放电法(HCD法)是先用真空泵抽真空,再向真空泵通入反应气体,并使真空度保持在10-5~10-2Pa范围内,利用低压大电流HCD电子枪使蒸发的金属或化合物离子化,从而在工作表面堆积成一层防护膜。为提高镀敷效率,一般在工件上施加负电压。锻模的表面处理技术国内应用不太多,这一领域大有开发的必要。整体模腔的渗碳、渗氮、渗硼、碳氮共渗以及模腔局部的喷涂、刷镀和堆焊等表面硬化支持都是很有发展前途的,突破这一领域将使我国制模技术得到很大提高。模具失效以后的焊补技术,国内90年代初期就有工厂进行研究和应用,如青海锻造厂,焊补后的锻模寿命可提高1倍。</p>

<p>  8、合理确定机械加工制造工艺和加工精度</p>

<p>  采用先进设备和技术确保每副模具具有高精度和互换性以保证锻模所要求的高精度和重复精度。制造工艺首先要解决加工后的加工变形与残留应力不能太大。粗加工时最好不要使表面粗糙度Ra>3.2μm,特别应注意在模具工作部分转角处要光滑过渡,减少热处理产生的热应力。</p>

<p>  模腔表面加工时留下的刀痕、磨痕都是应力集中的部位,也是早期裂纹和疲劳裂纹源,因此在锻模加工时一定要刃磨好刀具。平面刀具两端一定要刃磨好圆角R,圆弧刀具刃磨时要用R规测量,绝不允许出现尖点。在精加工时走刀量要小,不允许出现刀痕。对于复杂模腔一定要留足打磨余量,即使加工后没有刀痕,也要再由钳工用风动砂轮(或用其它方法)打磨抛光,但要注意防止打磨时局部出现过热、烧伤表面和降低表面硬度。模具电加工表面有硬化层,厚10μm左右,硬化层脆而有残留应力,直接使用往往引起早期开裂,这种硬化层在对其进行180℃左右的低温回火时可消除其残留应力。磨削时若磨削热过大会引起肉眼看不见的与磨削方向垂直的微小裂纹,在拉应力作用下,裂纹会扩展。对CrWMn钢冷挤凹模采用干磨,磨削深度为0.04~0.05mm时,使用中100%开裂;采用湿磨,磨削深度0.005~0.01mm时,使用性能良好。消除磨削应力也可将模具在260~315℃的盐浴中浸1.5min,然后在30℃油中冷却,这样硬度可下降1HRC,残留应力降低40%~65%。对于精密模具的精密磨削要注意环境温度的影响,要求恒温磨削。锻模粗加工时要为精加工保留合理的加工余量,因为所留的余量过小,可能因热处理变形造成余量不够,必须对新制锻模进行补焊,若留的余量过大,则增加了淬火后的加工难度。当锻模燕尾支承面与分模面平行度超过要求时,会使锻模锁扣啃坏或打裂,重者会打断锤杆甚至损坏锤头,所以在锻模加工中除对模腔尺寸按图纸要求加工外,对其它各部分外形尺寸、位置度、平行度、垂直度都要按要求加工并严格检验。有些厂对小型锻模热处理后用平面磨床磨削上下平面,对大型锻模用龙门刨床以刨代刮,保证制造精度。锻模模腔的粗糙度直接影响锻模寿命,粗糙度高会使锻件不易脱模,特别是中间带凸起部位,锻件越深,抱得越紧,最后只能卸下锻模用机加工或气割的方法破坏锻件。由于粗糙度值高会使金属流动阻力增加,严重时模锻若干件以后会将模壁磨损成沟槽,既影响锻件成形,也易使锻模早期失效。</p>

<p>  工作表面粗糙度值低的模具不但摩擦阻力小,而且抗咬合和抗疲劳能力强,表面粗糙度一般要求Ra=0.4~0.8μm。模具的制造装配精度对模具寿命的影响也很大,装配精度高,底面平直,平行度好,凸模与凹模垂直度高,间隙均匀,亦可获得相当高的寿命。
</p>

               
页: [1]
查看完整版本: 精密体积成形模具的设计制造模具寿命(下)

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网