HEATS 发表于 2010-10-22 00:09:32

多刃车刀改善加工表面质量的机理分析

<DIV class=ShowContent>&nbsp;&nbsp;&nbsp;&nbsp;引言<BR>&nbsp;&nbsp;&nbsp; 在车削加工中,加工表面质量通常随着切削深度的增加而降低,因此,为达到加工表面质量要求,往往不得不减小切削深度,采用多次车削来切除加工余量。多刃车刀的应用则可有效缓解加工表面质量与加工效率之间的矛盾。 <BR>
<TABLE align=right>
<TBODY>
<TR>
<TD align=middle>
<P align=center><IMG src="http://www.chmcw.com/upload/news/article/83/13220_ofhfpm20070302907.GIF" border=0><BR><B>图1 两刃车刀加工原理</B></P></TD>
<TR></TR></TBODY></TABLE>&nbsp;&nbsp;&nbsp; 多刃车刀的结构相当于将多把单刃车刀组合在一起。以两刃车刀为例,其加工原理如图1所示。设第一切削刃的切削深度为a<SUB>p1</SUB>,第二切削刃的切削深度为a<SUB>p2</SUB>,其最大切削深度为各切削刃切削深度之和,即a<SUB>p</SUB>=a<SUB>p1</SUB>+a<SUB>p2</SUB>。当切削深度小于a<SUB>p2</SUB>时,第一切削刃悬空,只有第二切削刃工作。根据“先粗后精”的加工原则,各切削刃的切削深度应依次递减,即a<SUB>p1</SUB>&gt;a<SUB>p2</SUB>。与普通车刀相比,多刃车刀可在满足相同表面质量要求条件下增大切削深度,提高加工效率。同时,当加工余量一定时,采用多刃车刀可提高加工精度等级,降低加工表面残余应力,减轻车床颤振,改善工件表面质量。多刃车刀适用于光轴、通孔、圆柱体工件等的加工,但用于加工阶梯轴时需适当加宽退刀槽,对应用范围有一定限制。 <BR>&nbsp;&nbsp;&nbsp; 多刃车刀改善加工表面质量的机理 <BR>&nbsp;&nbsp;&nbsp; 机械加工表面存在表面粗糙度、波度等表面几何形状误差和表面层的物理、机械性能变化。在车削加工中,影响工件表面质量的因素主要有表面粗糙度、冷作硬化、表面残余应力、表面波度等。采用多刃车刀可有效改善工件表面质量。<BR><B><BR>&nbsp;&nbsp;&nbsp; 1.表面粗糙度</B><BR>  采用多刃车刀可减小每一切削刃的切削深度,从而减小切削力及工件材料的塑性变形,因此可获得较小的表面粗糙度。另外,由于切削层较薄,切削刃与金属材料的冷焊作用较小,可减少积屑瘤、鳞刺的生成。因此,采用多刃车刀可显著提高工件表面粗糙度。<BR><B><BR>&nbsp;&nbsp;&nbsp; 2.冷作硬化</B> <BR>  在切削加工中,金属表层的塑性变形使晶体间产生剪切滑移、晶格扭曲并发生晶粒拉长、破碎及纤维化,从而引起金属材料的冷作硬化。冷作硬化可使工件表层硬度和强度提高,韧性降低,变得硬脆,影响加工表面质量。由于采用多刃车刀可减小材料塑性变形,因此可降低冷作硬化程度。此外,由于多个切削刃相距较近,切削热较难散发,可使刀刃与工件表层接触区温度升高,部分抵消冷作硬化作用。<B> <BR><BR>&nbsp;&nbsp;&nbsp; 3.表面残余应力</B><BR>
<TABLE align=right>
<TBODY>
<TR>
<TD align=middle>
<P align=center><IMG src="http://www.chmcw.com/upload/news/article/83/13220_hbqrrg20070302908.GIF" border=0><BR><B>图2 塑性变形产生的残余应力</B></P></TD>
<TR></TR></TBODY></TABLE>  在切削加工中,当表层材料相对基体材料发生形状和体积变化时,在加工表面层将产生残余应力,其大小随深度而变化,外层应力与表层一基体材料交界处的应力方向相反,相互平衡。图2a、2b分别表示由冷塑性变形和热塑性变形引起的残余应力。加工时,在切削力作用下,已加工表面层因受拉应力而产生伸长塑性变形,表面积趋向增大,此时已加工表面层处于弹性变形状态。切削力去除后,工件里层恢复原状,但外层受塑性变形影响不可能完全恢复原状,因而在表层产生残余压应力,里层则产生相应拉应力与之平衡,这就是冷塑性变形引起的残余应力。<BR><BR>  热塑性变形引起残余应力的机理为:加工时,工件表层在切削热作用下产生热膨胀,而里层基体材料受温度影响较小,使表层热膨胀受到限制而产生压应力。当切削温度超过材料弹性变形范围后,表层将产生热塑性变形。切削加工结束后,温度下降,材料膨胀恢复,但表层因产生热塑性变形不能完全恢复,因此在表层塑性区产生了残余拉应力,基体材料中则产生与之平衡的压应力。切削过程中的冷塑性变形与热塑性变形产生的残余应力方向相反,可相互抵消一部分。但因切削加工中冷塑性变形较大,热塑性变形较小,所以表面残余应力总体上表现为压应力。 <BR><BR>  采用多刃车刀加工时,由于切削热不易散发,切削温度较高,因此产生的热塑性变形及引起的残余拉应力s<SUB>F</SUB>也相对较大,通过与冷塑性变形引起的残余压应力s<SUB>B</SUB>相互抵消,最终可减小工件表面残余应力s<SUB>残</SUB>,计算方法为
<CENTER>s<SUB>残</SUB>=s<SUB>F</SUB>-s<SUB>B</SUB>=aEDt-s<SUB>B</SUB></CENTER>式中:a——线性膨胀系数 <BR>E——弹性模量 <BR>Dt——温升 <BR>  由图3所示材料屈服强度曲线可知,T<SUB>B</SUB>越高,则s<SUB>B</SUB>越小,s<SUB>F</SUB>越大,故s<SUB>残</SUB>随温升增大较快。<BR>
<TABLE align=right>
<TBODY>
<TR>
<TD align=middle>
<P align=center><IMG src="http://www.chmcw.com/upload/news/article/83/13220_et4p1c20070302909.GIF" border=0><BR><B>图3 温度与残余应力的关系</B></P></TD>
<TR></TR></TBODY></TABLE><BR><B>&nbsp;&nbsp;&nbsp; 4.表面波度</B> <BR>  工件表面波度主要由加工系统的颤振引起。当车床径向切入加工时,若切削过程受到一个瞬时扰动,使工件与刀具产生相对振动,就会在工件表面留下一段波纹;在下一转切削时,刀具在带波纹表面切削,切削厚度的变化会引起切削力波动,这种在动态切削力作用下引起的加工激振称为再生颤振。图4所示的刀具与工件相对振动位移分别为Y<SUB>a</SUB>和Y<SUB>b</SUB>,其方程为
<TABLE align=center>
<TBODY>
<TR>
<TD rowSpan=2>{</TD>
<TD>Y<SUB>a</SUB>=|Y|cos(wt+y)</TD></TR>
<TR>
<TD>Y<SUB>b</SUB>=|Y|coswt</TD></TR></TBODY></TABLE><BR>  切削厚度随时间变化的分量为 <BR>u(t)=Y<SUB>a</SUB>-Y<SUB>b</SUB>=|Y| <BR><BR>=-|Y|2sin(y/2) <BR><BR>=2|Y|sin(y/2)cos <BR><BR>
<TABLE align=right>
<TBODY>
<TR>
<TD align=middle>
<P align=center><IMG src="http://www.chmcw.com/upload/news/article/83/13220_k3gjdd20070302910.GIF" border=0><BR><B>图4 刀具与工件的相对振动位移</B></P></TD>
<TR></TR></TBODY></TABLE><BR><BR>  由于多刃车刀每个切削刃的初相位不同(分别为y<SUB>1</SUB>、y<SUB>2</SUB>、…),因此切削厚度随时间变化的分量u(t)也各不相同,即每一时刻各个切削刃的切削厚度不同,这样就破坏了加工系统的再生颤振,从而减小加工表面波度。<BR><BR><BR>  多刃车刀由于具有多个切削刃,在车削加工中可减小加工表面粗糙度和表面残余应力,部分消除工件表面冷作硬化和加工系统的再生颤振,从而可有效提高被加工工件的表面质量。</SUB></SPAN> </DIV>
               
页: [1]
查看完整版本: 多刃车刀改善加工表面质量的机理分析

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网