HEATS 发表于 2010-10-22 00:23:56

改装普通车床实现变距螺杆加工

<P align=left><STRONG><FONT face="Times New Roman">1</FONT> 变距螺杆的设计要求</STRONG></P>
<P align=left>  目前国产注射机的注射螺杆采用螺槽深度由深变浅的办法实现压缩原料、剪切搅动融料的目的。这种螺杆由于根部螺槽深,容易扭断。现设计一种螺槽深度相等、螺距由大变小的变距螺杆,也能完成物料的挤压任务。设计要求螺距依次为:</P>
<P><EM>T</EM>,<FONT face="Times New Roman"><EM>T</EM>+<EM>b</EM>,<EM>T</EM>+2<EM>b</EM>,<EM>T</EM>+3<EM>b</EM>,</FONT>…       (<FONT face="Times New Roman">1</FONT>)</P>
<P align=left>  如图<FONT face="Times New Roman">1</FONT>示,螺距按等差级数规律渐变。为了在普通车床上加工变距螺杆,当车床主轴等角速度<EM>ω</EM>转动时,刀架沿主轴<FONT face="Times New Roman">(</FONT>图<FONT face="Times New Roman">1</FONT>示为<EM><FONT face="Times New Roman">x</FONT></EM>轴<FONT face="Times New Roman">)</FONT>进给运动方程为:</P>
<P><EM>x</EM>=<EM>f</EM>(<EM>t</EM>) <IMG alt=表 src="http://www.chmcw.com/upload/news/article/83/13220_wxxwjf2008619164645.gif" align=right border=0>      (<FONT face="Times New Roman">2</FONT>)</P>
<P align=left>可用阶差法判定方程<FONT face="Times New Roman">(2)</FONT>类型。由<FONT face="Times New Roman">(1)</FONT>知,时间<EM><FONT face="Times New Roman">t</FONT></EM>与位移<EM><FONT face="Times New Roman">x</FONT></EM>关系如右表。从表中看出,<EM>Δ<FONT face="Times New Roman">t</FONT></EM>为定值时<EM>Δ</EM><FONT face="Times New Roman"><SUP>2</SUP><EM>x</EM></FONT>也为定值。因此断定方程<FONT face="Times New Roman">(2)</FONT>类型为:</P>
<P><EM>x</EM>=<EM><FONT face="Times New Roman">A</FONT></EM>+<EM><FONT face="Times New Roman">Bt</FONT></EM>+<FONT face="Times New Roman"><EM>Ct</EM><SUP>2</SUP>       (3)</FONT></P>
<P align=left>用待定系数法,将表中任三点<FONT face="Times New Roman">(<EM>t</EM></FONT>、<FONT face="Times New Roman"><EM>x</EM>)</FONT>之值代入式<FONT face="Times New Roman">(3)</FONT>,解联立方程组得系数:<EM><FONT face="Times New Roman">A</FONT></EM>=<FONT face="Times New Roman">0</FONT>;</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_xctwut2008619164517.gif"></P>
<P align=left>代入式<FONT face="Times New Roman">(3)</FONT>得刀架平移运动方程为:</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_uplhol2008619164532.gif">       (<FONT face="Times New Roman">4</FONT>) </P>
<P align=left>刀架移动的速度和加速度为:</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_ffcnxt2008619164545.gif">       (<FONT face="Times New Roman">5</FONT>)</P>
<P>&nbsp;<IMG src="http://www.chmcw.com/upload/news/article/83/13220_4pngav2008619164558.gif">       (<FONT face="Times New Roman">6</FONT>)</P>
<P align=left>式<FONT face="Times New Roman">(5)</FONT>中,取<FONT face="Times New Roman"><EM>t</EM>=0</FONT>,得运动初速度为:</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_ijvfvd2008619164614.gif">       (<FONT face="Times New Roman">7</FONT>) </P>
<P align=left>显然刀架进给运动为匀变速直线运动,车床改装的目标是要增置匀变速运动机构。</P>
<P align=center><IMG height=76 src="http://news.mechnet.com.cn/upload/0904162135028565.bmp" width=303></P>
<P align=center><STRONG>图<FONT face="Times New Roman">1</FONT> 变距螺杆</STRONG></P>
<P><STRONG>2 圆渐开线性质分析</STRONG> </P>
<P align=left>  图<FONT face="Times New Roman">2</FONT>所示为半径<EM><FONT face="Times New Roman">r</FONT></EM>的圆的渐开线,其参数方程为:</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_tfgr5x200861916479.gif">       (<FONT face="Times New Roman">8</FONT>)</P>
<P align=left>式中 <EM>θ</EM>——总滚动角<BR>对式<FONT face="Times New Roman">(8)</FONT>微分,得:<BR>  <EM><FONT face="Times New Roman">dx</FONT></EM>=<EM><FONT face="Times New Roman">r</FONT>θ</EM><FONT face="Times New Roman">cos</FONT><EM>θ</EM><FONT face="Times New Roman">d</FONT><EM>θ</EM><BR>  <EM><FONT face="Times New Roman">dy</FONT></EM>=<EM><FONT face="Times New Roman">r</FONT>θ</EM><FONT face="Times New Roman">sin</FONT><EM>θ</EM><FONT face="Times New Roman">d</FONT><EM>θ</EM></P>
<P align=center><IMG height=215 src="http://news.mechnet.com.cn/upload/0904162135097593.bmp" width=189></P>
<P align=center><STRONG>图<FONT face="Times New Roman">2</FONT> 圆渐开线</STRONG></P>
<P align=left>那么,渐开线弧长<FONT face="Times New Roman">l</FONT>的微分为:<BR>&nbsp;</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_rf94ox2008619165032.gif"></P>
<P>令<EM>θ</EM>=<EM>φ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM>φ</EM><BR>式中 <EM>φ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>——初始滚动角<BR>   <EM>φ</EM>——滚动角<BR>则 <FONT face="Times New Roman">d<EM>l</EM></FONT>=<EM><FONT face="Times New Roman">r</FONT></EM>(<EM>φ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM>φ</EM>)<FONT face="Times New Roman">d</FONT>(<EM>φ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM>φ</EM>)=(<EM><FONT face="Times New Roman">r</FONT>φ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM><FONT face="Times New Roman">r</FONT>φ</EM>)<FONT face="Times New Roman">d</FONT><EM>φ</EM><BR>图<FONT face="Times New Roman">2</FONT>中,<FONT face="Times New Roman"><EM>A</EM><SUB>0</SUB><EM>M</EM><SUB>0</SUB></FONT>为初始回转半径,其长为<EM>ρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>,由渐开线性质知:</P>
<P><EM>ρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>=<EM><FONT face="Times New Roman">r</FONT>φ</EM><FONT face="Times New Roman"><SUB>0</SUB>       (9)</FONT></P>
<P>d<EM>l</EM>=(<EM>ρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM><FONT face="Times New Roman">r</FONT>φ</EM>)<FONT face="Times New Roman">d</FONT><EM>φ</EM>       (<FONT face="Times New Roman">10</FONT>)</P>
<P align=left><EM>φ</EM>角对应的渐开线弧段长<SUB><IMG src="http://www.chmcw.com/upload/news/article/83/13220_pkqwzc2008619165131.gif"></SUB></P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_1l83dn2008619165123.gif">        (<FONT face="Times New Roman">11</FONT>)</P>
<P align=left>设<EM>φ</EM>=<FONT face="Times New Roman">0</FONT>时,<EM><FONT face="Times New Roman">M</FONT></EM>点与<FONT face="Times New Roman"><EM>M</EM><SUB>0</SUB></FONT>点重合,<FONT face="Times New Roman">l</FONT>=<FONT face="Times New Roman">0</FONT>代入式<FONT face="Times New Roman">(11)</FONT>得<EM><FONT face="Times New Roman">c</FONT></EM>=<FONT face="Times New Roman">0</FONT></P>
<P><FONT face="Times New Roman">则</FONT><IMG src="http://www.chmcw.com/upload/news/article/83/13220_g2ijvh2008619165221.gif">        (<FONT face="Times New Roman">12</FONT>)</P>
<P>图<FONT face="Times New Roman">2</FONT>中,渐开线瞬时回转半径<FONT face="Times New Roman">AM</FONT>之长为ρ,由渐开线性质知:</P>
<P><EM>ρ</EM>=<EM>ρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<FONT face="Times New Roman"><EM>r</EM></FONT><EM>φ</EM>        (<FONT face="Times New Roman">13</FONT>)</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_cvgcag2008619165315.gif"></P>
<P>则 <IMG src="http://www.chmcw.com/upload/news/article/83/13220_gvq1dy2008619165331.gif">       (<FONT face="Times New Roman">14</FONT>)</P>
<P><IMG src="http://www.chmcw.com/upload/news/article/83/13220_toqxew200861916543.gif">       (<FONT face="Times New Roman">15</FONT>)</P>
<P align=left>将式<FONT face="Times New Roman">(12)</FONT>、<FONT face="Times New Roman">(14)</FONT>、<FONT face="Times New Roman">(15)</FONT>、<FONT face="Times New Roman">(9)</FONT>分别与<FONT face="Times New Roman">(4)</FONT>、<FONT face="Times New Roman">(5)</FONT>、<FONT face="Times New Roman">(6)</FONT>、<FONT face="Times New Roman">(7)</FONT>对比,发现两组关系式结构形式完全相同。因此断定,可以用圆渐开线形运动来换置匀变速直线运动。</P>
<P align=left><STRONG><FONT face="Times New Roman">3</FONT> 圆渐开线形运动机构</STRONG></P>
<P align=left>  下面建立圆渐开线形运动与匀变速直线运动的当量关系。<BR>  比较式<FONT face="Times New Roman">(12)</FONT>与<FONT face="Times New Roman">(14)</FONT>,滚动角<EM>φ</EM>相当于时间<EM><FONT face="Times New Roman">t</FONT></EM>;单位:<FONT face="Times New Roman">1</FONT>弧度相当于<FONT face="Times New Roman">1</FONT>秒。<BR>  比较式<FONT face="Times New Roman">(15)</FONT>与<FONT face="Times New Roman">(6)</FONT>,基圆半径<EM><FONT face="Times New Roman">r</FONT></EM>相当于加速度<EM><FONT face="Times New Roman">a</FONT></EM>;单位:<FONT face="Times New Roman">1</FONT>毫米相当于<FONT face="Times New Roman">1</FONT>米<FONT face="Times New Roman">/</FONT>秒<FONT face="Times New Roman"><SUP>2</SUP></FONT>。<BR>  比较式<FONT face="Times New Roman">(14)</FONT>与<FONT face="Times New Roman">(5)</FONT>,渐开线回转半径<EM>ρ</EM>相当于速度<EM><FONT face="Times New Roman">v</FONT></EM>;单位:<FONT face="Times New Roman">1</FONT>毫米相当于<FONT face="Times New Roman">1</FONT>米<FONT face="Times New Roman">/</FONT>秒。<BR>  比较式<FONT face="Times New Roman">(12)</FONT>与<FONT face="Times New Roman">(4)</FONT>,渐开线弧长<FONT face="Times New Roman">l</FONT>相当于位移<EM><FONT face="Times New Roman">x</FONT></EM>;单位:<FONT face="Times New Roman">1</FONT>毫米相当于<FONT face="Times New Roman">1</FONT>米。<BR>  根据车床主轴角速度<EM>ω</EM>,确定匀变速运动加速度如式<FONT face="Times New Roman">(6)</FONT>,<FONT face="Times New Roman"><EM>a</EM>=<EM>b</EM></FONT><EM>ω</EM><FONT face="Times New Roman"><SUP>2</SUP>/(4</FONT><EM>π</EM><FONT face="Times New Roman"><SUP>2</SUP>)(<EM>b</EM></FONT>为螺距增量<FONT face="Times New Roman">)</FONT>。再以<FONT face="Times New Roman"><EM>r</EM>=<EM>a</EM>(</FONT>毫米<FONT face="Times New Roman">)</FONT>为基圆半径作渐开线形运动示意图,如图<FONT face="Times New Roman">3</FONT>示。</P>
<P align=center><IMG height=221 src="http://news.mechnet.com.cn/upload/0904162135219430.bmp" width=216></P>
<P align=center><STRONG>图<FONT face="Times New Roman">3</FONT> 圆渐开线形运动示意图</STRONG></P>
<P align=left>  现将图<FONT face="Times New Roman">3</FONT>中渐开线变换为基圆在直线上纯滚动<FONT face="Times New Roman">(</FONT>直线不动<FONT face="Times New Roman">)</FONT>,则直线上的<EM><FONT face="Times New Roman">M</FONT></EM>点留在随基圆一起转动的图纸上的轨迹,即为该圆的渐开线。如图<FONT face="Times New Roman">4</FONT>示,<EM><FONT face="Times New Roman">A</FONT></EM>点为基圆瞬时转动中心,由力学知,基圆绕<EM><FONT face="Times New Roman">A</FONT></EM>点转动角速度等于基圆相对于圆心转动的角速度<EM>ω</EM>,直线<EM><FONT face="Times New Roman">AM</FONT></EM>之长为<EM>ρ</EM>,固连于基圆的渐开线与<EM><FONT face="Times New Roman">M</FONT></EM>点相重合之点的速度为<EM><FONT face="Times New Roman">v<SUB>M</SUB></FONT></EM>,<BR>   <EM><FONT face="Times New Roman">v<SUB>M</SUB></FONT></EM>=<EM>ωρ</EM><BR>式中 <EM>ρ</EM>=<EM>ρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM><FONT face="Times New Roman">r</FONT>φ</EM> <EM>φ</EM>=<EM>ω<FONT face="Times New Roman">t</FONT></EM></P>
<P align=left>则  <EM><FONT face="Times New Roman">v<SUB>M</SUB></FONT></EM>=<EM>ω</EM>(<EM>ρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM><FONT face="Times New Roman">r</FONT>ω<FONT face="Times New Roman">t</FONT></EM>)=<EM>ωρ</EM><FONT face="Times New Roman"><SUB>0</SUB></FONT>+<EM><FONT face="Times New Roman">r</FONT>ω</EM><FONT face="Times New Roman"><SUP>2</SUP><EM>t</EM>       (16)</FONT></P><FONT face="Times New Roman">
<P align=left>设在发生线上有一半径为R、圆心为<EM>O</EM>′的圆,与渐开线在M点处相切(见图4)。随着渐开线连动基圆转动,圆<EM>O</EM>′与渐开线之间纯滚动,故相切点<EM>M</EM>速度相同。对于圆<EM>O</EM>′,<EM>v<SUB>M</SUB></EM>=<EM>ω</EM>′<EM>R</EM>;<BR>式中<EM>ω</EM>′为圆<EM>O</EM>′绕其中心<EM>O</EM>′转动的角速度。由式(16)知</P>
<P align=left><IMG src="http://www.chmcw.com/upload/news/article/83/13220_bvqfak200861916570.gif"></P>
<P align=left>式中<EM>ωρ</EM><SUB>0</SUB>/R与<EM>rω</EM><SUP>2</SUP>/<EM>R</EM>为常数,故<EM>ω</EM>′为时间t的线性函数。这说明当基圆<EM>O</EM>在直线上匀速纯滚动时圆<EM>O</EM>′则绕其中心作匀变速转动。</P></FONT>
<P align=center><IMG height=140 src="http://news.mechnet.com.cn/upload/0904162135317070.bmp" width=200></P>
<P align=center><STRONG>图<FONT face="Times New Roman">4</FONT> 圆渐开线形成图</STRONG></P><STRONG>
<P align=left><FONT face="Times New Roman">4</FONT> 匀变速运动机构结构设计</STRONG></P>
<P align=left>  将图<FONT face="Times New Roman">4</FONT>中基圆沿直线纯滚动分解为基圆中心沿直线的水平方向移动和基圆绕其中心的转动,将基圆中心固定,并解除直线<EM><FONT face="Times New Roman">AM</FONT></EM>在水平方向上的约束,则基圆绕定轴<EM><FONT face="Times New Roman">O</FONT></EM>转动时,直线<EM><FONT face="Times New Roman">AM</FONT></EM>作水平方向移动,如图<FONT face="Times New Roman">5</FONT>示,圆<EM><FONT face="Times New Roman">O</FONT></EM>′随直线<EM><FONT face="Times New Roman">AM</FONT></EM>水平移动,同时,圆<EM><FONT face="Times New Roman">O</FONT></EM>′绕<EM><FONT face="Times New Roman">O</FONT></EM>′匀变速转动。</P>
<P align=center><IMG height=141 src="http://news.mechnet.com.cn/upload/0904162135411834.bmp" width=211></P>
<P align=center><STRONG>图<FONT face="Times New Roman">5</FONT> 匀变速运动机构运动简图</STRONG></P>
<P>  图<FONT face="Times New Roman">6</FONT>是图<FONT face="Times New Roman">5</FONT>的匀变速运动机构结构图。当轴<FONT face="Times New Roman">1</FONT>匀速转动时,除带动圆渐开线形齿轮<FONT face="Times New Roman">2</FONT>匀速转动外,又通过以基圆为节圆的圆柱齿轮<FONT face="Times New Roman">3</FONT>,推动以发生线为节线的齿条<FONT face="Times New Roman">4</FONT>,齿条<FONT face="Times New Roman">4</FONT>与滑鞍<FONT face="Times New Roman">5</FONT>固连,所以滑鞍匀速水平移动。这时,装于滑鞍上的圆柱齿轮<FONT face="Times New Roman">6</FONT>受圆渐开线形齿轮<FONT face="Times New Roman">2</FONT>的推动而作匀变速转动,再通过轴<FONT face="Times New Roman">7</FONT>与一对锥齿轮<FONT face="Times New Roman">8</FONT>、<FONT face="Times New Roman">9(</FONT>锥齿轮<FONT face="Times New Roman">9</FONT>与轴<FONT face="Times New Roman">10</FONT>用滑键连接<FONT face="Times New Roman">)</FONT>,把匀变速转动的规律传递到定轴<FONT face="Times New Roman">10</FONT>上。</P>
<P align=center><IMG height=224 src="http://news.mechnet.com.cn/upload/0904162135491532.bmp" width=235></P>
<P align=center><STRONG>图<FONT face="Times New Roman">6</FONT> 匀变速运动机构结构图</STRONG><BR><FONT face="Times New Roman">1.</FONT>轴 <FONT face="Times New Roman">2.</FONT>圆渐开线形齿轮 <FONT face="Times New Roman">3.</FONT>齿轮 <FONT face="Times New Roman">4.</FONT>齿条 <FONT face="Times New Roman">5.</FONT>滑鞍<BR><FONT face="Times New Roman">6.</FONT>齿轮 <FONT face="Times New Roman">7.</FONT>轴 <FONT face="Times New Roman">8</FONT>、<FONT face="Times New Roman">9.</FONT>锥齿轮 <FONT face="Times New Roman">10.</FONT>轴</P>
<P align=left>  普通车床的改装工作,可以不改变车床的原有结构,把上述匀变速运动机构做成一个独立的附件,由车床的挂轮箱处加进走刀系统。当车床主轴匀速转动时,刀架获得匀变速直线运动;当车床主轴非匀速转动时,由于在原车床传动链中添置上匀变速运动函数关系,故也不影响等差螺距的形成。<BR>  圆渐开线形齿轮制造是本结构设计关键问题,它是一个盘状多圈非圆齿轮,尺寸较大,为便于加工,可把齿圈分成几段加工后再固定于齿盘上,见图<FONT face="Times New Roman">6</FONT>示。各段轮齿可在加工中心、线切割机床和非圆齿轮加工机床上加工。<A href="http://www.mechnet.com.cn" >【MechNet】</a></p>
               
页: [1]
查看完整版本: 改装普通车床实现变距螺杆加工

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网