国内PVD技术应用与研究现状(二)
按照Koehler外延异质结构理论,当沉积制备两种不同弹性模量金属M(1)和M(2)的多层膜时(EM(1)〈EM(2)〉,单层膜的厚度尺寸达到较小数量级时,可有效地阻碍位错源在层内的增殖;当受外部应力作用时,M(1)中的位错将向M(1)/M(2)界面移动,M(2)中形成的弹性应变会产生一种排斥力,阻碍位错通过界面,因此多层膜的硬度比由混合规则计算得到的硬度高得多。基于Koehler理论,纳米多层膜的研究已逐渐成为涂层界的开发热点,其设计思路是控制多层膜的一维周期结构,有效调整膜中的位错、缺陷及运动,从而获得高硬度、高模量及高温性能优异的薄膜。按其组成,纳米多层超硬膜可分为如下几类:
氮化物/氮化物:TiN/VN,56GPa;TiN/VNbN,41GPa;TiN/NbN,51GPa;TiN/SiN,80~105 GPa
氮化物/碳化物:TiN/CNX,45~55GPa;ZrN/CNX,40~45GPa
碳化物/碳化物:TiC/VC,52GPa;TiC/NbC,45~55GPa;WC/TiC,40GPa
氮化物或碳化物/金属:TiN/Nb,52GPa;TiAlN/Mo,51GPa
氮化物/氧化物:TiAlN/Al2O3
硼化物/氮化物或碳化物:TiB/TiN,TiB/TiC,50~70GPa
金属/金属等
纳米多层膜的超硬特性及高的模量预示着在工具领域的广阔应用前景,因此激发了国内相关科研工作者的开发热情。自2000年以来,武汉大学、吉林大学、上海交通大学、西安交通大学等相继开展了类似的研究工作。研究的重点在于各类纳米多层膜致硬机理的探索,所研究的膜系涉及C3N4/TiN、TiN/NbN、TaN/NbN、TiN/Al2O3,TiN/Si3N4,TiN/AlN,TiN/TiB2,TiN/SiO2,TIN/SiC,AlN/VN,Si3N4/CrN等,并获得了所期望的硬度及杨氏模量,而采用的制备手段则以PVD磁控溅射技术为主。上海交通大学金属基复合材料国家重点实验室所做的纳米多层AlN/(Ti,Al)N膜,当一维调制周期为10nm时,得到最高硬度29GPa;而当一维调制周期为1.3nm时,可得到最高杨氏模量377.8GPa。
但应引起重视的是,要实现超硬效应,经实验室研究证实,多层膜的一维周期通常应在10nm左右,而以磁控溅射为主的薄膜制备技术则基于通过对靶材与被镀工件空间位置及时间长短的控制,达到调整此周期的目的。对于复杂型面的切削刀具而言,各型面处获得均匀一致的纳米尺度的多层膜层显然十分困难,因此,尽管纳米多层膜的超硬特性及高的模量有望大幅度地提高刀具的综合性能,但到目前为止尚未能进入商业应用。
德国慕尼黑工业大学的Veprek等则根据Koehler的外延异质结构理论,提出了纳米复合超硬薄膜的理论和设计概念,并采用等离子体化学气相沉积方法制备了Ti-Si-N(nc-TiN/α-Si3N4)薄膜,据称薄膜硬度可达到105GPa。国内的西安交通大学、青岛化工学院、成都工具研究所等也与其合作进行了相关的研究工作,并获得了具有价值的实验数据。仅就制备方法而言,PCVD更适合复杂型面工件的纳米级薄膜的制备,然而目前工艺的重复性则是影响其商业应用的关键问题。
4国内PVD技术研究及应用存在的问题
4.1刀具涂层市场的变化
涂层刀具的应用与切削加工技术紧密相关,与九十年代不同,目前的应用更多地集中于硬质合金可转位刀片、高速齿轮刀具、硬质合金棒式刀具及部分异型刀具。应用于数控机床,其切削加工速度通常高于100m/min,而单一的TiN薄膜已难于满足使用要求。目前国内商业应用PVD技术,仍以高速钢刀具涂层为主,尽管市场对涂层刀具的需求不断上升,例如重庆地区的刀具涂层加工总额已从2000年的100万元增长到了今年的1000万元以上,但应用领域仍以摩托车齿轮加工等行业为主,切削速度大多低于50m/min;而在硬质合金刀具领域应用较少,其大多数高端涂层刀具产品被国外涂层公司所垄断,尤其是国外刀具涂层加工服务中心的出现,使国内的涂层加工服务企业面临更加严峻的竞争局面。
文章关键词:
页:
[1]