铰削试验研究和铰刀优化
图1 直刃铰刀实体模型
图2 斜刃铰刀实体模型
图3 螺旋刃铰刀实体模型
0 引言
由于我国经济的高速增长,工业用电量持续上升, 因此电站成套设备制造行业生产任务大幅增加,使得原有的一些机械加工方法无法满足生产的需要,其中铰孔加工尤为突出。铰孔加工以往使用高速钢铰刀,加工时间长,刀具消耗量大,生产效率低,采用硬质合金铰刀是有效的解决方案。以前使用标准铰刀,当被加工孔较深(L/D>4)时,加工过程中排屑困难, 堵塞的切屑刮伤了已加工表面,孔的表面质量达不到要求;并且由于堵塞的切屑挤压破坏了铰刀刀刃,致使铰刀破损严重。为了解决这一问题,在对加工条件和标准铰刀结构进行分析的基础上,进行了三种刃形硬质合金铰刀的设计与开发研究工作。
本文以解决生产实际需要为目标,并结合国际先进加工业日益广泛采用的干式加工为手段,对直刃铰刀、斜刃铰刀和螺旋刃铰刀进行了铰削实验研究,获得了大量实验数据,对三种刃形铰刀的铰削力、表面粗糙度、切屑形状进行了综合对比评判,得到直刃铰刀、斜刃铰刀、螺旋刃铰刀的铰削综合性能排序,实现了铰刀的优化,从而优选出最佳使用效果的铰刀,解决了生产实际需求。
1 三种刃形硬质合金铰刀实体建模
为更好地直观了解设计的铰刀几何形状及其切削性能, 利用I-DEAS软件进行实体建模工作。在造型的时候,首先,依据莫氏锥柄的尺寸,旋转出莫氏锥度圆锥体,利用体切割做出刀柄,再拉伸出圆柱体作为刀体的颈部, 旋转拉伸并切割圆柱体,形成铰刀的螺旋槽,将刀体的颈部与莫氏锥柄连接在一起, 接下来做出刀具工作部分长度圆柱体,并在此圆柱上面切割出刀片槽,将此带有刀槽的刀具工作圆柱体部分与前面的刀体颈部和莫氏锥柄连接在一起,形成刀体。依据刀片的实际几何尺寸进行刀片的实体模型设计, 并将刀片移至刀片槽位置,从而铰刀实体模型完成,如图1、图2、图3 所示为 种刃形铰刀的实体模型。根据实体模型加工出种刃形铰刀。
图4 铰削力比较
图5 表面粗糙度对比曲线图
2 铰削力的试验结果及分析
实验采用了干式铰削,通过试切的办法最终确定了应采取的合理切削用量。使用了直刃铰刀、斜刃铰刀和螺旋刃铰刀 种刃型铰刀, 试验材料为40Cr钢,切削用量采用在相同进给量(f=0.1mm/r)与背吃刀量的情况下,通过改变不同的主轴转速获得切削力值。整理采集的数据,将 种刃形铰刀的铰削力分别进行了对比,如图4所示(符号◆代表直刃铰刀的铰削力曲线;符号■代表斜刃铰刀的铰削力曲线;符号▲代表螺旋刃铰刀铰削力曲线)。对比 种铰刀, 直刃铰刀受力大于斜刃铰刀,斜刃铰刀受力又大于螺旋刃铰刀。在相同切削条件下,螺旋刃铰刀的受力最小。
3 表面粗糙度的测量结果与分析
表面粗糙度是反映零件表面上微观几何形状误差的一个重要指标,它主要是由于在加工过程中刀具和零件表面之间的摩擦,切屑分离时的塑性变形, 以及工艺系统中存在的高频振动等原因造成的。加工孔的表面粗糙度的好坏是评价一把铰刀的重要指标,因此对以上实验加工的孔进行表面粗糙度的测量。图5为表面粗糙度曲线对比图。
在固定进给量(f=0.1mm/r)的情况下,变动不同的转速,对比 种刃形铰刀,可以发现螺旋刃铰刀加工孔的表面粗糙度值最小, 斜刃铰刀次之,直刃铰刀最大。
图6 切屑形貌对比图
页:
[1]