锥形螺旋铣刀的数控加工及成形原理
<P align=left>一、<STRONG>前</STRONG> <STRONG>言</STRONG></P><P align=left> 锥形螺旋铣刀是用于加工复杂曲面工件(如叶片、模腔等)的异形刀具,随着机械加工对象日趋复杂化,此类刀具的应用也日益广泛。制造锥形螺旋铣刀的传统加工方法如凸轮补偿法、皮带变径法、变距丝杠法、非圆齿轮传动法等都无法完全实现刀具等前角和等刃带宽。为此,本文提出在普通数控铣床上加工锥形螺旋铣刀的方法及其成形原理。</P><P align=left><STRONG>二、锥形螺旋铣刀的数控加工及成形原理</STRONG></P><P align=left><STRONG><FONT face="Times New Roman">1</FONT>.</STRONG>简易铣齿装置<BR> 本加工方法是通过在普通数控铣床上增加一套简易铣齿装置来实现的。如图<FONT face="Times New Roman">1</FONT>所示,将单角铣刀(二次刀具)通过<FONT face="Times New Roman">7</FONT>∶<FONT face="Times New Roman">24</FONT>锥柄与机床主轴相连,在工作台上增设一个<FONT face="Times New Roman">FANUC-BESK</FONT> <FONT face="Times New Roman">FB15</FONT>型直流伺服数控电机,通过套筒与分度头的输入端相连。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_odrim6200831816174.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">1</FONT></STRONG></P><P align=left> <STRONG><FONT face="Times New Roman">2</FONT>.</STRONG>坐标系的设置<BR> 坐标系的设置如图<FONT face="Times New Roman">2</FONT>所示。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_oor2k72008318161721.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">2</FONT></STRONG></P><P align=left> 图中,(<FONT face="Times New Roman">O</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>-<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP> <FONT face="Times New Roman">Y</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP> <FONT face="Times New Roman">Z</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>)为固定坐标系,<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>方向为机床纵向,<FONT face="Times New Roman">Y</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>方向铅垂向上,<FONT face="Times New Roman">Z</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>方向为机床横向;<FONT face="Times New Roman">(O</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP>-<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP> <FONT face="Times New Roman">Y</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP> <FONT face="Times New Roman">Z</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP>)为辅助固定坐标系,<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP>为工件轴线方向,<FONT face="Times New Roman">Z</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP>与<FONT face="Times New Roman">Z</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>重合,<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP>与<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>的夹角(仰角)为τ;(<FONT face="Times New Roman">O</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP>-<FONT face="Times New Roman">X</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP><FONT face="Times New Roman">Y</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP><FONT face="Times New Roman">)</FONT>为与刀具固连的动坐标系,<FONT face="Times New Roman">Y</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP>与<FONT face="Times New Roman">Y</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>平行,<FONT face="Times New Roman">x</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP>与<FONT face="Times New Roman">x</FONT><SUP>(<FONT face="Times New Roman">0</FONT>)</SUP>平行,<FONT face="Times New Roman">O</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP>在铣刀中心,<FONT face="Times New Roman">O</FONT><SUP>(<FONT face="Times New Roman">s</FONT>)</SUP>的坐标为(<FONT face="Times New Roman">x<SUB>c</SUB></FONT>,<FONT face="Times New Roman">y<SUB>c</SUB></FONT>,<FONT face="Times New Roman">z<SUB>c</SUB></FONT>)。<BR> 坐标变换矩阵为</P><IMG src="http://www.chmcw.com/upload_files/article/20/1_l0bt4z2008318161744.gif"> (<FONT face="Times New Roman">1</FONT>) <P align=left> <STRONG><FONT face="Times New Roman">3</FONT>.</STRONG>刀刃曲线方程<BR> 如图<FONT face="Times New Roman">3</FONT>所示,圆锥面上一条等螺旋角刀刃曲线上任意一点的坐标可表示为</P><IMG src="http://www.chmcw.com/upload_files/article/20/1_mx6qko2008318161758.gif"> (<FONT face="Times New Roman">2</FONT>) <P align=left>式中 <FONT face="Times New Roman">r</FONT>——<FONT face="Times New Roman">p</FONT>点的回转半径,<FONT face="Times New Roman">r</FONT>=<FONT face="Times New Roman">xtg</FONT>ξ(ξ为锥顶半角)<BR> Ψ——<FONT face="Times New Roman">p</FONT>点半径相对于<FONT face="Times New Roman">xoy</FONT>平面的偏转角</P><P align=center><STRONG><IMG src="http://www.chmcw.com/upload_files/article/20/1_f9qixm2008318161815.gif"></STRONG></P><P align=center><STRONG>图<FONT face="Times New Roman">3</FONT></STRONG></P><P align=left> 根据微分几何原理,圆锥螺旋线的理论偏转角为</P><IMG src="http://www.chmcw.com/upload_files/article/20/1_mzqktv2008318161834.gif"> (<FONT face="Times New Roman">3</FONT>) <P align=left> 工件旋转轴称为<FONT face="Times New Roman">B</FONT>轴,当<FONT face="Times New Roman">B</FONT>轴旋转?角后,则有</P><IMG src="http://www.chmcw.com/upload_files/article/20/1_radln42008318161856.gif"> (<FONT face="Times New Roman">4</FONT>) <P align=left> 对于相邻的两条刀刃曲线分别有</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_xiklvf2008318161929.gif"> (<FONT face="Times New Roman">5</FONT>)</P><P> <IMG src="http://www.chmcw.com/upload_files/article/20/1_g1x9ao2008318161937.gif"> (<FONT face="Times New Roman">6</FONT>)</P><P align=left>式中 <FONT face="Times New Roman">z</FONT>——刀齿数<BR> δ——刃带宽度</P><P align=left> 用计算机打印出的刀刃曲线如图<FONT face="Times New Roman">4</FONT>所示。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_aqetaj200831816200.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">4</FONT></STRONG></P><P align=left> 切线矢量<FONT face="Times New Roman"><STRONG>t</STRONG><SUB>A</SUB></FONT>、<STRONG><FONT face="Times New Roman">t<SUB>B</SUB></FONT>分别为</STRONG></P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_si9ytd2008318162017.gif"> (<FONT face="Times New Roman">7</FONT>)</P><P> <IMG src="http://www.chmcw.com/upload_files/article/20/1_pl5ldb2008318162031.gif"> (<FONT face="Times New Roman">8</FONT>)</P><P align=left>式中 <FONT face="Times New Roman">dr</FONT>/<FONT face="Times New Roman">dx</FONT>=-<FONT face="Times New Roman">tg</FONT>ξ<BR><FONT face="Times New Roman">d</FONT>Ψ/<FONT face="Times New Roman">dx</FONT>=-<FONT face="Times New Roman">tg</FONT>β/<FONT face="Times New Roman">sin</FONT>ξ<FONT face="Times New Roman">x</FONT></P><P align=left> <STRONG><FONT face="Times New Roman">4</FONT>.砂轮表面方程及法矢量<BR> </STRONG>为了建立砂轮与刀刃的接触条件,首先需要列出砂轮表面方程及法矢量。如图<FONT face="Times New Roman">5</FONT>所示,砂轮锥面方程及法矢量分别为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_e5ixka200831816219.gif"> (<FONT face="Times New Roman">9</FONT>)</P><P> <IMG src="http://www.chmcw.com/upload_files/article/20/1_ekfdrv2008318162123.gif"> (<FONT face="Times New Roman">10</FONT>)</P><P align=left>式中 <FONT face="Times New Roman">R</FONT>——锥面大圆半径<BR><FONT face="Times New Roman">R<SUB>A</SUB></FONT>——锥面任一点回转半径<BR>θ<FONT face="Times New Roman"><SUB>A</SUB></FONT>——位置参数角<BR>α——锥底角</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_fjumji2008318162137.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">5</FONT></STRONG></P><P align=left> 砂轮底面方程及法矢量分别为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_rrhk0u200831816220.gif"> (<FONT face="Times New Roman">11</FONT>)</P><P> <IMG src="http://www.chmcw.com/upload_files/article/20/1_bbbw2a200831816225.gif"> (<FONT face="Times New Roman">12</FONT>)</P><P align=left>式中 <FONT face="Times New Roman">R<SUB>B</SUB></FONT>,θ<FONT face="Times New Roman"><SUB>B</SUB></FONT>——底面位置参数<BR> <STRONG><FONT face="Times New Roman">5</FONT>.刀具与工件的接触条件<BR> </STRONG>加工时,铣刀锥面与刀刃曲线<FONT face="Times New Roman">A</FONT>接触,铣刀底面与刃带<FONT face="Times New Roman">B</FONT>相切,故在接触点有</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_ncxsih2008318162241.gif"> (<FONT face="Times New Roman">13</FONT>) <IMG src="http://www.chmcw.com/upload_files/article/20/1_wyvgkz200831816232.gif"><IMG src="http://www.chmcw.com/upload_files/article/20/1_trdjeh200831816236.gif"><IMG src="http://www.chmcw.com/upload_files/article/20/1_npa5dh2008318162310.gif"></P><P align=left> 在式(<FONT face="Times New Roman">13</FONT>)~(<FONT face="Times New Roman">20</FONT>)的<FONT face="Times New Roman">8</FONT>个方程中,有<FONT face="Times New Roman">x<SUB>A</SUB></FONT>,<FONT face="Times New Roman">x<SUB>B</SUB></FONT>,<FONT face="Times New Roman">R<SUB>A</SUB></FONT>,<FONT face="Times New Roman">R<SUB>B</SUB></FONT>,θ<FONT face="Times New Roman"><SUB>A</SUB></FONT>,θ<FONT face="Times New Roman"><SUB>B</SUB></FONT>,<FONT face="Times New Roman">x<SUB>c</SUB></FONT>,<FONT face="Times New Roman">y<SUB>c</SUB></FONT>,<SUB><IMG src="http://www.chmcw.com/upload_files/article/20/1_n61zfn2008318162329.gif"></SUB>共<FONT face="Times New Roman">9</FONT>个未知量,其中一个为参变量,代表加工过程中的一系列加工位置,故方程组可求解。</P><P align=left> <STRONG><FONT face="Times New Roman">6</FONT>.解析法求解运动方程组<BR> </STRONG>为求解上述方程组,取<FONT face="Times New Roman">x<SUB>B</SUB></FONT>为参变量,依次取一系列<FONT face="Times New Roman">x<SUB>B</SUB></FONT>代表加工过程中的一系列加工位置,式(<FONT face="Times New Roman">17</FONT>)可写成</P><IMG src="http://www.chmcw.com/upload_files/article/20/1_nmte4g2008318162421.gif"> (<FONT face="Times New Roman">21</FONT>) <P align=left> 由上式求解出?,再代入式(<FONT face="Times New Roman">19</FONT>)求出<FONT face="Times New Roman">y<SUB>c</SUB></FONT>,再以<FONT face="Times New Roman">x<SUB>A</SUB></FONT>为自变量,任取一个<FONT face="Times New Roman">x<SUB>A</SUB></FONT>值,由式(<FONT face="Times New Roman">13</FONT>)求出θ<FONT face="Times New Roman"><SUB>A</SUB></FONT>,由式(<FONT face="Times New Roman">16</FONT>)求出<FONT face="Times New Roman">R<SUB>A</SUB></FONT>,再代入式(<FONT face="Times New Roman">15</FONT>)求<FONT face="Times New Roman">y<SUB>c</SUB></FONT>,该<FONT face="Times New Roman">y<SUB>c</SUB></FONT>应与式(<FONT face="Times New Roman">19</FONT>)求出的<FONT face="Times New Roman">y<SUB>c</SUB></FONT>相等,这需要反复调整<FONT face="Times New Roman">x<SUB>A</SUB></FONT>值才能实现,故原八维方程组的求解转化为一维非线性方程的求解。最后由式(<FONT face="Times New Roman">14</FONT>)求出<FONT face="Times New Roman">x<SUB>c</SUB></FONT>。加工时需<FONT face="Times New Roman">x</FONT>,<FONT face="Times New Roman">y</FONT>,<FONT face="Times New Roman">B</FONT>三坐标轴联动。<BR> <STRONG><FONT face="Times New Roman">7</FONT>.半解析法求解运动方程组<BR> </STRONG>求解运动方程组的另一种方法为半解析法(半成形法)。具体方法如下:为便于加工,规定当刀刃曲线<FONT face="Times New Roman">A</FONT>上任一点被加工时,该点均应转到<FONT face="Times New Roman">z</FONT><SUP>(<FONT face="Times New Roman">1</FONT>)</SUP>=<FONT face="Times New Roman">0</FONT>平面内,即处于最高点位置,这时刀刃曲线的偏转角Ψ<FONT face="Times New Roman"><SUB>A</SUB></FONT>正好被工件的形成位置?所弥补,因此有</P><P align=left><EM>Ψ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>+<SUB><IMG src="http://www.chmcw.com/upload_files/article/20/1_n61zfn2008318162329.gif"></SUB>=<FONT face="Times New Roman">0 </FONT>(<FONT face="Times New Roman">22</FONT>)</P><P align=left>故有</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_h1m5h42008318162549.gif"><IMG src="http://www.chmcw.com/upload_files/article/20/1_wambuz2008318162555.gif"></P><P align=left>此外,规定τ=ξ,即仰角等于锥角,则有</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_6tmm0l2008318162614.gif"><IMG src="http://www.chmcw.com/upload_files/article/20/1_yrho7w2008318162619.gif"></P><P align=left>故有</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_qxqinm2008318162638.gif"></P><P align=left>由<SUB><IMG src="http://www.chmcw.com/upload_files/article/20/1_qbqepc200831816270.gif"></SUB>得<BR><BR> <FONT face="Times New Roman">cos</FONT><EM>β</EM><FONT face="Times New Roman">cos</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>+<FONT face="Times New Roman">sin</FONT><EM>β</EM><FONT face="Times New Roman">sin</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>=<FONT face="Times New Roman">0<BR></FONT> -<EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>+<EM>β</EM>=<FONT face="Times New Roman">0 </FONT>(<FONT face="Times New Roman">27</FONT>)<BR> <EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>=-(<EM>β</EM>-<FONT face="Times New Roman">90°</FONT>)</P><P align=left>上式关系也可图<FONT face="Times New Roman">6</FONT>所示几何图形直观求出。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_d6kjfg2008318162717.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">6</FONT></STRONG></P><P align=left> 因此,式(<FONT face="Times New Roman">14</FONT>)~(<FONT face="Times New Roman">16</FONT>)表示的接触条件转换为</P><P align=left><FONT face="Times New Roman"><EM>R</EM><SUB>a</SUB>cos</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>+<FONT face="Times New Roman"><EM>x</EM><SUB>c</SUB></FONT>=<FONT face="Times New Roman"><EM>x</EM><SUB>A</SUB></FONT>/<FONT face="Times New Roman">cos</FONT><EM>ξ</EM> (<FONT face="Times New Roman">28</FONT>)<BR>(<EM><FONT face="Times New Roman">R</FONT></EM>-<FONT face="Times New Roman"><EM>R</EM><SUB>A</SUB></FONT>)<FONT face="Times New Roman">tg</FONT><EM>α</EM>+<FONT face="Times New Roman"><EM>y</EM><SUB>c</SUB></FONT>=<FONT face="Times New Roman">0</FONT> (<FONT face="Times New Roman">29</FONT>)<BR><FONT face="Times New Roman"><EM>R</EM><SUB>A</SUB>sin</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT>+<FONT face="Times New Roman"><EM>z</EM><SUB>c</SUB></FONT>=<FONT face="Times New Roman">0</FONT> (<FONT face="Times New Roman">30</FONT>)</P><P align=left> 铣刀底面与刃带<FONT face="Times New Roman">B</FONT>的接触条件为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_tcttrx2008318162749.gif"> (<FONT face="Times New Roman">31</FONT>) </P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_aqpmw3200831816286.gif"> (<FONT face="Times New Roman">32</FONT>)</P><P align=left>依次给出一系列<FONT face="Times New Roman">x<SUB>A</SUB></FONT>值,由式(<FONT face="Times New Roman">22</FONT>)求出?,由式(<FONT face="Times New Roman">27</FONT>)求出θ<FONT face="Times New Roman"><SUB>A</SUB></FONT>,由式(<FONT face="Times New Roman">31</FONT>)求出<FONT face="Times New Roman">x<SUB>B</SUB></FONT>,由式(<FONT face="Times New Roman">32</FONT>)求出<FONT face="Times New Roman">y<SUB>c</SUB></FONT>,再由式(<FONT face="Times New Roman">29</FONT>)求出<FONT face="Times New Roman">R<SUB>A</SUB></FONT>为</P><P align=left><FONT face="Times New Roman"><EM>R</EM><SUB>A</SUB></FONT>=<EM><FONT face="Times New Roman">R</FONT></EM>+<FONT face="Times New Roman"><EM>y</EM>ctg</FONT><EM>α</EM> (<FONT face="Times New Roman">33</FONT>)</P><P align=left>上式关系也可由图<FONT face="Times New Roman">7</FONT>所示几何图形直观求出。<BR> 最后由式(<FONT face="Times New Roman">28</FONT>)和式(<FONT face="Times New Roman">30</FONT>)求出<FONT face="Times New Roman">x<SUB>c</SUB></FONT>,<FONT face="Times New Roman">z<SUB>c</SUB></FONT>分别为</P><P align=left><FONT face="Times New Roman"><EM>x</EM><SUB>c</SUB></FONT>=<FONT face="Times New Roman"><EM>x</EM><SUB>A</SUB></FONT>/<FONT face="Times New Roman">cos</FONT><EM>ξ</EM>-<FONT face="Times New Roman"><EM>R</EM><SUB>A</SUB>cos</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT> (<FONT face="Times New Roman">34</FONT>)</P><P align=left><FONT face="Times New Roman"><EM>z</EM><SUB>c</SUB></FONT>=-<FONT face="Times New Roman"><EM>R</EM><SUB>A</SUB>sin</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>A</SUB></FONT> (<FONT face="Times New Roman">35</FONT>)</P><P align=left> 加工过程需<FONT face="Times New Roman">x</FONT>,<FONT face="Times New Roman">y</FONT>,<FONT face="Times New Roman">z</FONT>和<FONT face="Times New Roman">B</FONT>四坐标轴联动。用这种方法加工可以得到等法向前角(即铣刀锥底角α的余角)。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_0ovojw2008318162839.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">7</FONT></STRONG></P><P align=left><STRONG>三、结</STRONG> <STRONG>语</STRONG></P><P align=left> 按解析法加工锥形螺旋铣刀时,工件的位置、刀刃曲线上的被加工点以及二次刀具的位置等均未预先给定,而是通过运动函数方程组的求解得到。按半解析法(半成形法)加工锥形螺旋铣刀时,工件的位置和刀刃曲线上的被加工点由人为给定(但最后仍能满足全部方程组),二次刀具的位置则通过运动函数方程组的求解得到(故称为半解析法)。采用这种加工方法,刀刃曲线被人为旋转到被加工位置(类似于成形法),但刃带上对应接触点是根据等刃带宽和相切条件确定的,故又可称为半成形法。这种方法概念明了,数学形式简单,计算方法简便,易于推广应用。</P>
页:
[1]