圆柱铣刀前刀面法曲率的计算
<STRONG><FONT face="Times New Roman">1</FONT>.</STRONG>前言<BR> 对于前刀面为平面的刀具,前角和其它几何角度一起可完全确定前刀面的方位;而对于前刀面为曲面的刀具,几何角度则只能确定前刀面在刀刃处的切平面,不能确定前刀面的形状。前刀面的形状,特别是刀刃处前刀面的弯曲情况对卷屑、断屑和排屑影响甚大,是刀具的一个重要性能指标。文献[<FONT face="Times New Roman">1</FONT>]研究了如何精确磨出圆柱形螺旋刃铣刀的法向前角。本文将在此基础上,进一步对已经保证了法向前角的前刀面进行研究,求出它在刀刃处的法曲率,特别是与刀刃垂直方向的法曲率,从而了解刀刃处前刀面的弯曲状况,为制造性能优良的铣刀提供理论依据。<BR> <STRONG><FONT face="Times New Roman">2</FONT>.</STRONG>前刀面描述<BR> 图<FONT face="Times New Roman">1</FONT>为用砂轮外圆磨削圆柱铣刀前刀面的情况,磨削原理及各符号的意义已在文献[<FONT face="Times New Roman">1</FONT>]中作了说明。前刀面方程为<SUP>[<FONT face="Times New Roman">1</FONT>]</SUP><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_lecdd52008226154754.gif"></P><P align=left>其中θ和<IMG src="http://www.chmcw.com/upload_files/article/20/1_tsquto2008226154833.gif">为参变数,θ和<IMG src="http://www.chmcw.com/upload_files/article/20/1_tsquto2008226154833.gif">参数曲线方向的切矢<IMG src="http://www.chmcw.com/upload_files/article/20/1_wilv1c2008226154847.gif">和<IMG src="http://www.chmcw.com/upload_files/article/20/1_veowkp2008226154856.gif">为</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_6bmind2008226154824.gif"><IMG src="http://www.chmcw.com/upload_files/article/20/1_pvdfd82008226154916.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">1</FONT> 砂轮与刀具的相对位置</STRONG></P><P align=left> 这是一般性切矢方程,对于图<FONT face="Times New Roman">1</FONT>中的<FONT face="Times New Roman">M</FONT>点则有</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_ptziqu2008226154927.gif"></P><P align=left><FONT face="Times New Roman">M</FONT>点两条参数曲线方向的单位切矢仍用<FONT face="Times New Roman">r</FONT><SUB>θ</SUB>和<FONT face="Times New Roman">r</FONT><SUB>φ</SUB>表示,它们为 </P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_rjzeuv2008226154941.gif"></P><P align=left>(<FONT face="Times New Roman">5</FONT>)式中,<FONT face="Times New Roman">P</FONT>为前刀面的螺旋参数,<IMG src="http://www.chmcw.com/upload_files/article/20/1_pci45n200822615503.gif">为<FONT face="Times New Roman">M</FONT>点与<FONT face="Times New Roman">xoz</FONT>平面的夹角 </P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_dmajwf2008226154955.gif"></P><P align=left> <FONT face="Times New Roman">M</FONT>点的单位法矢<FONT face="Times New Roman">n</FONT>(正向由前刀面指向容屑槽)为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_guuh062008226155041.gif"></P><P align=left> <STRONG><FONT face="Times New Roman">3</FONT>.</STRONG><IMG src="http://www.chmcw.com/upload_files/article/20/1_veowkp2008226154856.gif">方向的法曲率<FONT face="Times New Roman">K</FONT><SUB>φ</SUB><BR> 由图<FONT face="Times New Roman">1</FONT>,砂轮端面与前刀面(<FONT face="Times New Roman">1</FONT>)的交线是半径为<FONT face="Times New Roman">R<SUB>c</SUB></FONT>的圆,它在<FONT face="Times New Roman">M</FONT>点的曲率为<IMG src="http://www.chmcw.com/upload_files/article/20/1_mzb0qk2008226155121.gif">。由于是平面曲线,该点单位主法矢β<FONT face="Times New Roman"><SUB>c</SUB></FONT>为(图<FONT face="Times New Roman">1</FONT>)</P><P><IMG style="WIDTH: 593px; HEIGHT: 52px" height=53 src="http://www.chmcw.com/upload_files/article/20/1_dqcv3w2008226155140.gif" width=627></P><P align=left><IMG src="http://www.chmcw.com/upload_files/article/20/1_rmhoal200822615528.gif">与<IMG src="http://www.chmcw.com/upload_files/article/20/1_px4unc2008226155218.gif">之间的夹角θ<FONT face="Times New Roman"><SUB>1</SUB></FONT>为<BR> <FONT face="Times New Roman">cos</FONT>θ<FONT face="Times New Roman"><SUB>1</SUB></FONT>=<IMG src="http://www.chmcw.com/upload_files/article/20/1_rmhoal200822615528.gif">.<IMG src="http://www.chmcw.com/upload_files/article/20/1_px4unc2008226155218.gif">=<FONT face="Times New Roman">n<SUB>x</SUB>sin</FONT>φ<FONT face="Times New Roman">cos</FONT>β<FONT face="Times New Roman"><SUB>w</SUB></FONT>-<FONT face="Times New Roman">n<SUB>y</SUB>sin</FONT>φ<FONT face="Times New Roman">sin</FONT>β<SUB><FONT face="Times New Roman">w</FONT></SUB>+<FONT face="Times New Roman">n<SUB>z</SUB>cos</FONT>φ (<FONT face="Times New Roman">10</FONT>)</P><P align=left>由默尼埃定理<SUP>[<FONT face="Times New Roman">2</FONT>]</SUP>可得法曲率</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_hpe6xh200822615532.gif"></P><P align=left> <STRONG><FONT face="Times New Roman">4</FONT>.</STRONG><IMG src="http://www.chmcw.com/upload_files/article/20/1_tbx9nm2008226155338.gif">方向的法曲率<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB>和短程挠率<EM><FONT face="Times New Roman">G</FONT></EM><SUB>θ</SUB><BR> 由于前刀面为圆柱螺旋面,<EM>θ</EM>参数曲线就是半径<FONT face="Times New Roman">r</FONT>=<EM><FONT face="Times New Roman">d</FONT></EM>/<FONT face="Times New Roman">2</FONT>的圆柱面上的螺旋线。圆柱螺旋线上任一点的曲率<FONT face="Times New Roman">k</FONT>和挠率<EM>τ</EM>为常数,它们为(参见[<FONT face="Times New Roman">2</FONT>]<FONT face="Times New Roman">P41</FONT>的例<FONT face="Times New Roman">2</FONT>) </P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_sabini2008226155320.gif"></P><P align=left> 螺旋线上任一点的主法矢与螺旋线轴线垂直相交(参见[<FONT face="Times New Roman">3</FONT>]<FONT face="Times New Roman">P59</FONT>的习题<FONT face="Times New Roman">3</FONT>),所以<FONT face="Times New Roman">M</FONT>点的单位主法矢<IMG src="http://www.chmcw.com/upload_files/article/20/1_veq7hw2008226155421.gif">为</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_veq7hw2008226155421.gif">=<FONT face="Times New Roman">o</FONT>,-<FONT face="Times New Roman">sin</FONT><IMG src="http://www.chmcw.com/upload_files/article/20/1_fcntdu2008226155439.gif">,-<FONT face="Times New Roman">cos</FONT><IMG src="http://www.chmcw.com/upload_files/article/20/1_fcntdu2008226155439.gif"> (<FONT face="Times New Roman">14</FONT>)</P><P align=left><IMG src="http://www.chmcw.com/upload_files/article/20/1_veq7hw2008226155421.gif">与前刀面法矢<EM><FONT face="Times New Roman">n</FONT></EM>之间的夹角<EM>θ</EM><FONT face="Times New Roman"><SUB>2</SUB></FONT>为</P><P align=center><FONT face="Times New Roman">cos</FONT><EM>θ</EM><FONT face="Times New Roman"><SUB>2</SUB></FONT>=<IMG src="http://www.chmcw.com/upload_files/article/20/1_veq7hw2008226155421.gif"><STRONG><SUP><FONT face=宋体>.</FONT></SUP></STRONG><IMG height=11 alt="nj.gif (50 bytes)" src="http://www.chmcw.com/upload_files/article/20/1_olfjhtnj.gif" width=7>=-<FONT face="Times New Roman"><EM>n</EM><SUB>y</SUB>sin</FONT><IMG src="http://www.chmcw.com/upload_files/article/20/1_fcntdu2008226155439.gif">-<FONT face="Times New Roman"><EM>n</EM><SUB>z</SUB>cos</FONT><IMG src="http://www.chmcw.com/upload_files/article/20/1_fcntdu2008226155439.gif"> (<FONT face="Times New Roman">15</FONT>)</P><P align=left>所以,<IMG src="http://www.chmcw.com/upload_files/article/20/1_tbx9nm2008226155338.gif">方向的法曲率<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB>为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_1s1jcy2008226155526.gif"></P><P align=left> 圆柱螺旋面上沿一条螺旋线(<EM>θ</EM>参数曲线)上任一点的螺旋面法矢与螺旋面轴线(<EM><FONT face="Times New Roman">x</FONT></EM>轴)的夹角也是固定的,所以该螺旋线的主法矢与相应点的螺旋面法矢的交角也是固定的。由此可得(参见[<FONT face="Times New Roman">2</FONT>]<FONT face="Times New Roman">P237</FONT>的定理<FONT face="Times New Roman">3</FONT>)</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_hj5rhw2008226155539.gif"></P><P align=left> <STRONG><FONT face="Times New Roman">5</FONT>.</STRONG><EM><FONT face="Times New Roman">M</FONT></EM>点的法曲率及前刀面法向截形曲率半径<EM>ρ</EM><FONT face="Times New Roman"><SUB>M</SUB><BR></FONT> 图<FONT face="Times New Roman">2</FONT>为<EM><FONT face="Times New Roman">M</FONT></EM>点切平面内的情况。作<IMG src="http://www.chmcw.com/upload_files/article/20/1_tbx9nm2008226155338.gif">的垂直方向<IMG src="http://www.chmcw.com/upload_files/article/20/1_7c5nlg2008226155549.gif">,它也是<FONT face="Times New Roman">M</FONT>点处刀刃的法截线方向,该方向的法曲率用<FONT face="Times New Roman"><EM>K</EM><SUB>N</SUB></FONT>表示,则该方向的短程挠率为-<EM><FONT face="Times New Roman">G</FONT></EM><SUB>θ</SUB>。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_lqwfog2008226155617.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">2</FONT> <FONT face="Times New Roman">M</FONT>点的切平面</STRONG></P><P align=left> <IMG src="http://www.chmcw.com/upload_files/article/20/1_tbx9nm2008226155338.gif">与<IMG src="http://www.chmcw.com/upload_files/article/20/1_vcl6542008226155635.gif">之间的</P><P align=left>夹角Δ为</P><P align=center><FONT face="Times New Roman">cos</FONT>Δ=<FONT face="Times New Roman">r</FONT><SUB>θ</SUB><STRONG><SUP><FONT face=宋体>.</FONT></SUP></STRONG><FONT face="Times New Roman">r</FONT><SUB>φ</SUB> (<FONT face="Times New Roman">18</FONT>)</P><P align=left><IMG src="http://www.chmcw.com/upload_files/article/20/1_rfznhl2008226155650.gif">方向的法曲率和短程挠率满足<BR> <EM><FONT face="Times New Roman">K</FONT></EM><SUB>φ</SUB>=<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB><FONT face="Times New Roman">cos<SUP>2</SUP></FONT>Δ+<FONT face="Times New Roman">2<EM>G</EM></FONT><SUB>θ</SUB><FONT face="Times New Roman">sin</FONT>Δ<FONT face="Times New Roman">cos</FONT>Δ+<FONT face="Times New Roman"><EM>K</EM><SUB>N</SUB>sin<SUP>2</SUP></FONT>Δ<BR>所以<BR> <FONT face="Times New Roman"><EM>K</EM><SUB>N</SUB></FONT>=(<EM><FONT face="Times New Roman">K</FONT></EM><SUB>φ</SUB>-<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB><FONT face="Times New Roman">cos<SUP>2</SUP></FONT>Δ-<FONT face="Times New Roman">2<EM>G</EM></FONT><SUB>θ</SUB><FONT face="Times New Roman">sin</FONT>Δ<FONT face="Times New Roman">cos</FONT>Δ)/<FONT face="Times New Roman">sin<SUP>2</SUP></FONT>Δ (<FONT face="Times New Roman">19</FONT>)</P><P align=left>由此即得<FONT face="Times New Roman">M</FONT>点法向截形的曲率半径ρ<FONT face="Times New Roman"><SUB>M</SUB></FONT>为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_h0r8qr2008226155727.gif"></P><P align=left>求得<FONT face="Times New Roman"><EM>K</EM><SUB>N</SUB></FONT>之后,即可求得任一方向<FONT face="Times New Roman">r</FONT><SUB>α</SUB>(图<FONT face="Times New Roman">2</FONT>)的法曲率<EM><FONT face="Times New Roman">K</FONT></EM><SUB>α</SUB>和短程挠率<EM><FONT face="Times New Roman">G</FONT></EM><SUB>α</SUB>为<BR> <EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB>=<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB><FONT face="Times New Roman">cos<SUP>2</SUP></FONT><EM>α</EM>+<FONT face="Times New Roman">2<EM>G</EM></FONT><SUB>θ</SUB><FONT face="Times New Roman">sin</FONT><EM>α</EM><FONT face="Times New Roman">cos</FONT><EM>α</EM>+<FONT face="Times New Roman"><EM>K</EM><SUB>N</SUB>sin<SUP>2</SUP></FONT><EM>α</EM> (<FONT face="Times New Roman">21</FONT>)</P><P align=left> <EM><FONT face="Times New Roman">G</FONT></EM><SUB>α</SUB>=(<FONT face="Times New Roman"><EM>K</EM><SUB>N</SUB></FONT>-<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB>)<FONT face="Times New Roman">sin</FONT><EM>α</EM><FONT face="Times New Roman">cos</FONT><EM>α</EM>+<EM><FONT face="Times New Roman">G</FONT></EM><SUB>θ</SUB>(<FONT face="Times New Roman">cos<SUP>2</SUP></FONT><EM>α</EM>-<FONT face="Times New Roman">sin<SUP>2</SUP></FONT><EM>α</EM>) (<FONT face="Times New Roman">22</FONT>)</P><P align=left> 到此,<FONT face="Times New Roman">M</FONT>点的法曲率问题已完全解决。在实际切削中,流屑方向一般不在<FONT face="Times New Roman">r<SUB>N</SUB></FONT>方向,按(<FONT face="Times New Roman">21</FONT>)式即可求出流屑方向的法曲率,进而可研究流屑剖面(不一定是法截面)内前刀面的弯曲状况。<BR> <STRONG><FONT face="Times New Roman">6</FONT>.</STRONG>算例与说明<BR> 以立铣刀为例,铣刀直径<EM><FONT face="Times New Roman">d</FONT></EM>=<FONT face="Times New Roman">50mm</FONT>,螺旋角<EM>β</EM>=<FONT face="Times New Roman">45°</FONT>,法向前角<EM>γ</EM><FONT face="Times New Roman"><SUB>n</SUB></FONT>=<FONT face="Times New Roman">15°</FONT>,磨削深度<EM><FONT face="Times New Roman">h</FONT></EM>=<FONT face="Times New Roman">10mm</FONT>,所用砂轮半径<FONT face="Times New Roman"><EM>R</EM><SUB>c</SUB></FONT>=<FONT face="Times New Roman">35mm</FONT>,砂轮轴线与刀具轴线之间的夹角<EM>β</EM><FONT face="Times New Roman"><SUB>w</SUB></FONT>+<FONT face="Times New Roman">90°</FONT>=<FONT face="Times New Roman">136</FONT>.<FONT face="Times New Roman">5°</FONT>,磨削中心距<EM><FONT face="Times New Roman">H</FONT></EM>=<FONT face="Times New Roman">48</FONT>.<FONT face="Times New Roman">874mm</FONT>,磨削偏距<EM><FONT face="Times New Roman">E</FONT></EM>=-<FONT face="Times New Roman">8</FONT>.<FONT face="Times New Roman">338</FONT>。求得<EM><FONT face="Times New Roman">K</FONT></EM><SUB>θ</SUB>=<FONT face="Times New Roman">0</FONT>.<FONT face="Times New Roman">005176379</FONT>,<EM><FONT face="Times New Roman">G</FONT></EM><SUB>θ</SUB>=<FONT face="Times New Roman">0</FONT>.<FONT face="Times New Roman">02</FONT>,<EM><FONT face="Times New Roman">K</FONT></EM><SUB>φ</SUB>=<FONT face="Times New Roman">0</FONT>.<FONT face="Times New Roman">00250113</FONT>,Δ=<FONT face="Times New Roman">120</FONT>.<FONT face="Times New Roman">7778326°</FONT>,<EM>ρ</EM><FONT face="Times New Roman"><SUB>M</SUB></FONT>=<FONT face="Times New Roman">39</FONT>.<FONT face="Times New Roman">4074mm</FONT>。<BR> 对于一定的切削条件以及特定的卷屑、断屑和排屑要求,存在一个理想的前刀面弯曲状况,一般设计刀具时可以用<EM>ρ</EM><FONT face="Times New Roman"><SUB>M</SUB></FONT>来表征。当按给定的磨削工艺参数计算出的<EM>ρ</EM><FONT face="Times New Roman"><SUB>M</SUB></FONT>不能满足要求时,可以改变一些可调参数,例如重新计算<FONT face="Times New Roman"><EM>R</EM><SUB>c</SUB></FONT>和<EM>β</EM><FONT face="Times New Roman"><SUB>w</SUB></FONT>。</P>
页:
[1]