找回密码
 注册会员

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 249|回复: 0

螺杆压缩机转子滚刀刀刃分离廓形的精确解析

[复制链接]
发表于 2010-9-12 10:59:14 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转磨削论坛

您需要 登录 才可以下载或查看,没有账号?注册会员

×
1.引 言 9 {3 ?# l8 G7 x* m

  螺杆转子是螺杆压缩机的关键零件,压缩机工作的可靠性和效率取决于螺杆转子的加工精度。我国规定的标准螺杆转子端面型线复杂,且廓形存在尖点,滚刀的设计制造困难,因此,螺杆转子滚削加工方法在我国尚未推广应用。
  国际上一些发达国家,如日本、英国、法国等均对螺杆转子的滚削加工进行了大量研究工作,他们在保证压缩机效率的前提下,通过改进螺杆转子端面型线,使之光滑流畅无尖点,从而简化滚刀的设计原理,实现了螺杆转子的滚削加工。
  本文以国家标准螺杆转子的滚削加工为对象,对压缩机螺杆转子滚刀的设计理论与滚刀制作进行了试验研究。

; x q$ e+ _% s6 c

  2.刀刃分离廓形方程的求解

6 J$ y$ I: ~ Z3 o

  (1)阴转子端面型线和滚刀轴向刃形
  阴转子端面齿形采用单边非对称摆线圆弧组成(见图1),即阴转子齿形端面型线由直线ab段、圆弧bc段、延长外摆cd段和径向直线de段组成。已知阴转子螺杆参数:左旋齿数Z26,杆长L95mm,导程h21701mm,节圆半径r23024mm,齿高半径R12915mm。阴阳转子中心距AD504mm,阳转子节圆半径RR2016mm。根据上述条件求出abbccdde段的滚刀轴向刃形系列坐标点,由这些点可画出所设计滚刀的轴向刃形如图2所示。

! ^/ t& `4 n/ V

: }" z$ |) I; r# W

1 阴转子端面截形

8 L0 V" }: g' V& _5 Y8 G: R" E- i

, A$ j: F. n, J

2 滚刀轴向刃形

' ~ O* m J) A3 n# K

  根据已知条件,计算出与阴转子cd段相啮合的轴向刃形c1d1,对应于工件上d点的刀刃上d1点坐标为d4408376203069);计算出与阳转子de段相啮合的滚刀上d1点坐标为d1e1,对应于工件上d点,刀刃上d1点坐标为d1376313502781)。不难看出,在c1d1段与d1e1 段之间出现了一段分离的曲线。出现上述分离现象是由于阴转子端面齿形上的cd段与de段的交点d非光滑,存在尖点的缘故。因此,为了设计制造出正确的刀刃廓形,从而加工出正确的工件廓形(即不致使阴转子廓形上的尖点d被切掉),有必要精确计算出滚刀刃形上的这段分离曲线。
  (2)刀刃分离廓形的精确设计
  此种设计是利用公共齿条的概念,把空间啮合转化为平面啮合来求解。已知滚刀基本蜗杆与工件的啮合,通过工件的端面齿形求出与工件端面上尖点d相啮合的齿条上的分离段曲线,再通过这段分离曲线求出与之相啮合的滚刀上相应的分离段曲线。
  设滚刀基本蜗杆与左旋阴转子啮合的相互位置如图3所示。当滚刀蜗杆1转过φ1角时,工件2相应地转过φ2角。

1 H1 S* C6 `( C6 ~9 B& Q) b7 N

- K) r S8 Q4 { h" ]) a8 V2 F2 f

3 蜗杆与工件的相对位置

# N+ L/ A* T9 ~# C7 q

  由齿形法线定理可得到与工件相啮合的齿条方程为

5 y" A; t- U' h' O( |

, F0 ]& |$ C4 i) c* ^1 g

  将阴转子端面齿形方程的cd段、de段代入上式,求得工件端面齿条齿形如图4所示。其中两分离点d2d2ot1系中的坐标分别为d26.628252,-7.008753)和d2(-8.32824,-0626718)。
  为了精确求解滚刀刃形上的分离段曲线,必须先求出与工件相啮合的工件端面齿条上的分离段曲线。显然,图4上的d2d2曲线是由工件相对齿条作啮合运动,工件齿形上尖点d的运动在齿条齿形上形成的轨迹。

% p4 O4 P S$ M

! i( ]( `( {9 Z% P

4 工件端面齿条齿形

+ e7 j6 h' M0 V- [6 G: t+ W

  由图5可知,工件与齿条的啮合相当于工件节圆在齿条节线上作纯滚动,当工件由o点滚到o′点时,d点在ot1系中的运动轨迹方程为

! |) e# v6 Z( p, j, o

( L1 }" e+ b* k0 O* J; |/ x

式中 ρ0d229925φ415°5364
  由式(1)求得d2d2点坐标,并将其代入式(2),即可求得θ1对应于d2d2点的值,它们分别为040459和-01329434rad)。故对应于d2d2曲线,方程中θ1的取值范围为-01329434θ1040459
  为了求出与齿条上d2d2曲线相啮合的滚刀刃形上的分离段廓形d2d2,必须先求出齿条在滚刀蜗杆端面的方程。
  由图6中的几何关系可知,齿条的法向坐标与齿条在工件端面坐标之间的关系为
  

% V; \) a. f7 {) E

1 [1 j8 _' _' k2 `8 q M% w8 e

5 工件端面齿条形上d1d2曲线的形成

2 t, G5 b5 x X

xtnytn换算到滚刀蜗杆的端剖面得

9 c. T- z' Y- W1 V {7 t

, G0 t+ E, [2 n7 j1 O

式中β1β2分别为滚刀蜗杆1与工件2在其节圆柱上的螺旋角。

4 |- ]+ E" n8 q1 M# z) h: k

7 V( w3 s# E: J5 \- y" w

6 公共齿条在工件端面、滚刀端面及法剖面截形

7 @7 m) L% ]: ~7 {; P* A# L) n, g

  由图3可知,当齿条上M′(xy)点进入啮合时,按齿形法线定理,则过M′点处的齿形法线应通过啮合节点P,故M′点处的法线方程在Ot系中为
  (Xtxtcosμt+(Ytytsinμt0
式中 XtYt——过M′点齿形法线上任意点的坐标
  将P点在ot系中的坐标(r1φ1o)代入法线方程得

, z0 J4 S( c$ a& ?

9 \: U: Q" A3 }/ t

  从ot系到o3系的变换式为

$ B4 ]% w P: ^ x: E) |

) m0 D1 N) r+ y& x8 S

联解式(4)、(5),可求得滚刀的端面刃形。求得滚刀蜗杆的端面刃形方程后,令其绕滚刀蜗杆的轴线作螺旋运动,即可得到滚刀蜗杆的齿面方程式。
  如图7所示,设与滚刀蜗杆固联的辅助坐标系为o3x3y3z3,在初始位置时,原点o3o3重合,x3y3轴分别与x3y3轴重合。使滚刀蜗杆不动,然后令o3系及与其固联的滚刀端面刃形一起绕z3轴作螺旋参数P1的螺旋运动,从而形成螺杆的螺旋齿面,由o3系到o3系的坐标变换式为

3 O* q% z3 u$ ]' j6 f

8 E4 D; I) c! j. F, l8 ?

  上式即为滚刀蜗杆的齿面方程式,令x30,即可得到滚刀的轴向刃形为

: U3 `3 a. N: [7 P, X

, y8 o7 a( T0 i* s) T- _

  联解式(5)、(6),即可得到滚刀轴剖面上分离廓形的坐标点。

- A, _% [ t0 F- c7 X* {( B

2 c9 [$ m* r7 b l

7 滚刀蜗杆端面及轴向刃形

e3 O: c! S3 n5 @

  3.结论

T5 z' c9 ?& O

  通过无锡压缩机股份公司计量处的检测验证,本文提出的滚刀分离部分廓形计算原理正确,保证了尖点d不致被切掉。通过一次性走刀即可包络加工出包括尖点在内的四段曲线。

; {( C; y0 F2 t. n
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网

QQ|Archiver|手机版|小黑屋|磨削技术网 ( 苏ICP备12056899号-1 )

GMT+8, 2024-11-15 19:33 , Processed in 0.116830 second(s), 23 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表