找回密码
 注册会员

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 579|回复: 0

驱动桥壳的焊接方案及设计

[复制链接]
发表于 2010-9-12 16:02:50 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转磨削论坛

您需要 登录 才可以下载或查看,没有账号?注册会员

×
【论文摘要】通过对轮式装载机驱动桥壳几种焊接结构和工节特点对比分析,介绍了驱动桥受力状况应力分布和计算,探讨了零部件的合理设计,从而确定驱动桥壳的最优设计方案。 : e7 J6 m! v* e0 U/ w; S

    驱动桥是轮式装载机传动系统的重要部件之一,而桥壳又是组成驱桥最关键的零件。

: X2 n: O: [5 j. A

    1 早期的驱动桥壳结构

( n; k* W2 q) {% I) o

    早期的装载机驱运输动桥结构如图1所示。桥壳5和支承轴2通过螺栓连接,同时桥壳法兰还为连接板,安装行车制动器。桥壳和支承轴因较大的法兰盘而使其重量大、加工量大、因而加工成本高。桥壳铸件在法兰与圆截面的交接处,因为壁厚不均匀,使得金属液冷却固化速度不一致,两端大法尘阻碍壳体的自由收缩,帮在圆角过度处易形成铸造缺陷,从而极大地影响桥壳的强度。使用过程中,有从该处断裂的实例。受结构及使用限制,铸造缺陷无法从根本上解决,造成质量不稳定。因此,根据零件的合理设计原则,对具有横截面尺寸突变或形状复杂的构件,应设法改用简单的组合或焊接。

- |/ S! B6 o+ \8 K) X

13220_js05jo200822210946.jpg

9 y( ]1 W0 d6 ]: ]4 b

1.轮边减不速器2.支承轴3.制动器4.制动器连板
5.桥壳6.主传动总成

2 j4 v4 ^4 N X9 v

    2 焊接方案及工艺特点

4 g" u' \- P: V/ }

    用焊接的方式把桥壳,支承轴,制动器连接板2a、b同一类第一、第二方案;图2c为第二类,以制动器连接板为孔,桥壳、支承轴为轴的焊接形式;图2d为第三类,以桥壳为轴,支承轴为孔的焊接形式。

+ n, x D h0 _/ l1 Y

13220_ozmj9t2008222101019.jpg

7 |: ^3 i K: u3 y+ R

1.桥壳  2.支承轴  3.制动器连接板 
(a)第一方案  (b)第二方案  (c)第三方案  (d)第四方案

# H/ v% g. T& D+ G4 I: q

     第一方案、第二方案均以桥壳为孔,支承轴为轴,配合定位后用角焊缝或U形焊缝焊接,制动器连接板以角焊缝焊于桥壳上。该方案简化了我厂早期驱动桥壳复杂笨重的结构,使铸锻件结构简单,易浇铸,易加工,成本低。轴、孔之间用紧配合定位,改善了单纯由焊缝承受力矩的受力状况。这两种方案的区别在于轴,孔之间焊缝的焊接形成。前者为角焊缝焊接形式,加工工艺简单;后者为U形坡口焊缝形式,其坡口焊接有足够的叠合面,焊接牢固,且熔深大,熔敷效率高。焊接处面积较小,可避免热量过多流失,保证焊接质量。其焊缝的承载能力较角焊缝增大冼多。从焊接工艺分析,第一方案较第二方案更合理。故其余方案中轴、孔之间焊接均采用U形坡口。

+ {, V @1 ~4 C2 G$ m2 r9 H

    第三方案(图2c)是桥壳、支承轴均为轴,分别与制动器连接板用U形坡口。轴、孔之间用紧配合。该方案轴、孔之间紧配合。用热装配的方法装配时,制动器连接板的体积小,易加热,便于装配。但与此同时驱动桥桥壳的精度取决于三个零件,必然使累积误差增大。要获得同样的精度,势必要提高零件的加工精度。承载焊缝两条,连接三个零件,加工复杂,成本高,受力状况不好,承载能力减弱。对制动器连接板与桥之间的焊缝不利。

! T8 }2 M' k* J4 K

   第四方案(图2d)以支承轴为孔,桥壳为轴,U形焊缝连接,制动盘以角焊缝焊于支承轴上。该方案具有第一方案的优点,又无第三方案结构和工艺上的弊病,是一咱较为理想的方案。

2 K& d' z. i) b6 r# T

   由此可见,第一、第四种为优选方案。

0 q @3 D0 |/ _! k% O

    3 驱动桥受力状况与应力分布

8 H) U: \% G$ P$ x

   驱动桥受力状况简图及弯矩图见图3。

, v8 z" w* h$ ?1 W2 d

  13220_9jhlni2008222101136.jpg

3 N, H& K( g5 b0 T7 _0 R6 _% j! I

   由受力简图呆以看出,从轮胎中心到安装座与车架连接处,其合成应力是逐步增大的。
所以,根据其受力特点,也要求桥壳截面的模数随之增大。

1 m% A' t; A0 b# T7 S& r

   第一方案(图2a)中,焊缝左右侧均为圆环截面,设左侧为A—A截面,右侧面为B—B截面。

5 }" a! g7 a4 b

   截面模数W=(π(D4-d4))/32D,因直径D1=D2,d1WB,合成应力δ=M/W,焊缝左右侧WA≈WB,故δA<δB。

3 u$ {! R# H. s+ z" j6 O3 |

   从图3弯矩图也可以扑看出其合成应力δA<δB。

! ?' u9 x5 p) {2 c: @& T

   由此可看出,截面模数随着合成应力的逐步增大而变小,其截面面积的变化与桥壳受力变化及合成应力并不相符。强度负荷的薄弱环节之一,即危险截面是桥壳B截面。根据ZL50C装载机具体数据,按装载机以最大水增力铲掘,翻斗受阻后,后轮离开地面工况较恶劣,经计算驱动桥桥壳危险截面B截面的合成应力为:δA=182N/mm2。

5 D4 Z- i( E+ c8 m3 \1 I! q

   第四方案(图2d)中,焊缝左侧为圆环截面,设左侧面为A—A截面,直径D1,d1,截面模数W=(π(D4-d4))/32D。

. ~' z6 L: J" u4 u+ ?& }

   焊缝右侧为圆环截面逐步过渡成椭圆形截面,椭圆形环截面呈放射形逐步增大,设右侧面为B—B截面,以圆环截央与左侧比较,因直径D1=D2,d1WB,合成应力δ=M/W,焊缝左右侧WA≈WB,故δA<δB。

$ s' a' l( @, K# h2 ]

   从图3弯矩图也可以看出其合成应力δA<δB。

, P7 m" U7 W0 s% S- e+ s

   由此可以看出,其截面积的变化与桥壳受力变化及合成应力的逐步增大,其截面积的变化与桥壳受力变化及合成应力特点相符。强度负荷的薄弱环节为,由桥壳受力变化及合成应力特点相符。强度负荷的薄弱环节为,由桥壳移到锻件支承轴截面A—A上,用上面同样工况和同样数据计算得支承A—A截面有合成应力为δA=169.62N/mm2。

$ F- P5 d- `5 l

   与第一方案比较,同样是危险截面而其合成应力却较小,故安全系数大。

' x1 V% Q5 S( p

   综上所述,两种方案比较,第四种方案的结构设计符合桥轴的受力特点,其截面面积随着合成应力的逐步提高而加大,且焊缝左右侧直径较第一方案的直径要大,强度会相应介高,安全系数较高,故第四方案为优选方案。

+ v7 ~- E/ ]! H" X' J# [4 Z
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网

QQ|Archiver|手机版|小黑屋|磨削技术网 ( 苏ICP备12056899号-1 )

GMT+8, 2024-12-22 01:45 , Processed in 0.160621 second(s), 26 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表