马上注册,结交更多好友,享用更多功能,让你轻松玩转磨削论坛
您需要 登录 才可以下载或查看,没有账号?注册会员
×
3 CA精密铸造工艺的关键问题及相关技术讨论 9 t5 d6 K" Z" y2 z0 W9 g; q
/ n; o* ~' p4 T1 m
近年来,与CA精铸技术相关的三维CAD设计、反求工程、快速成型、浇注系统CAD、铸造过程数值模拟(CPS)以及特种铸造等单体技术取得了长足的进步,这些成就的取得为集成化的CA精铸技术的形成奠定了基础,促进了CA精铸技术的迅猛发展和应用。为了使各单体技术成功地用于CA精铸,必须消除彼此之间的界面,将这些技术有机地结合起来。从而在产品开发中做到真正意义上的先进设计+先进材料+先进制造。3.1三维模型的生成与电子文档交换
+ @# }; M2 \6 F, H X0 }" P: C8 d/ i. o( ^& S$ |& p, J
如何得到部件精确的电子数据模型,是CA精铸至关重要的第一步。随着三维CAD软件、逆向工程等技术的发展,这项工作变得简单而且迅捷。在此主要介绍利用IDEAS进行实体建模和数据转换的过程。IDEAS9集成了三维建模与逆向工程建模模块。通过MasterModeler模块可以得到复杂模型(见图2),既可以进行全几何约束的参数化设计,又可进行任意几何与工程约束的自由创新设计;曲面设计提供了包括变量扫掠、边界曲面等多种自由曲面的造型功能。逆向工程Freeform可将数字化仪采集的点云信息进行处理,创建出曲线和曲面,进行设计,曲面生成后可直接生成RPM用文件,也可传回主建模模块进行处理(见图4)。实体文件生成后需转变成STL文件(见图3)以作为RP设备的输入。转换过程应注意选择成型设备名称,通常选用SLA500,三角片输出精度在0.005~0.01之间。采用MagicRp处理时应注意乘上25.4,得到实际设计尺寸。 


" N2 K' F" ?8 _6 H1 U9 x
7 @' O) a7 F" y, W& _8 J 3.2凝固过程的数值模拟 , ^' h, R0 ?+ t8 M- z- D3 o ~
& ?6 p; Y+ w6 m, d: q( @, c
3.2.1凝固过程的数值模拟原理-|MechNet|欢迎登陆中国机械专家网www.MechNet.com.cn
2 k+ r. c, s/ Z
; t T: t7 i& `2 G 铸造是一个液态金属充填型腔、并在其中凝固和冷却的过程,其中包含了许多对铸件质量产生影响的复杂现象。实际生产中往往靠经验评价一个工艺是否可行。对一个铸件而言,工艺定型需通过多次试验,反复摸索,最后根据多种试验方案的浇铸结果,选择出能够满足设计要求的铸造工艺方案。多次的试铸要花费很多的人力、物力和财力。 $ @1 u9 q! O" g* ~7 _' t0 n9 q
' k) f* ~. [; G2 a% O 铸造过程虽然很复杂,偶然因素很多,但仍遵循基本科学理论,如流体力学、传热学、金属凝固、固体力学等。这样,铸造过程可以抽象成求解液态金属流动、凝固及温度变化的问题,就是要在给定的初始条件和边界条件下,求解付立叶热传导方程、弹塑性方程。计算机技术的发展,使得求解物理过程的数值解成为可能。应用计算机数值模拟,可对极其复杂的铸造过程进行定量的描述。
( |9 U# d( @- ?* ~% N' U
! e0 p6 M" d7 W# C 通过数学物理方法抽象,铸造过程可表征成几类方程的耦合: 6 G4 n# @" A( U$ U
! n( t) h& F9 K 1热能守恒方程:2连续性方程:3动量方程:常用的数值模拟方法主要是有限差分法、有限元法。有限元差分法数学模型简单,推导简单易于理解,占用内存较少。但计算精度一般,当铸件具有复杂边界形状时,误差较大,应力分析时需将差分网格转换成有限元网格进行计算。有限元法技术根据变分原理对单元进行计算,然后进行单元总体合成,模拟精度高,可解决形状复杂的铸件问题。无论采用什么数值方法,铸造过程的数值模拟软件应包括三个部分:前处理、中间计算和后处理。前处理主要为中间计算提供铸件、型壳的几何信息;铸件和型壳的各种物理参数和铸造工艺信息。中间计算主要根据铸造过程设计的物理场,为数值计算提供计算模型,并根据铸件质量或缺陷与物理场的关系预测铸件质量。后处理是指把计算所得结果直观地以图形方式表达出来。铸造过程的数值模拟系统组成。 " I. i0 }( f9 f0 X, s9 B8 p# q
0 ]+ d: j& a0 l! L _! {# v |