找回密码
 注册会员

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 185|回复: 0

运用俄歇电子能谱研究了Cr/金刚石界面的结合状态

[复制链接]
发表于 2011-7-13 23:58:25 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转磨削论坛

您需要 登录 才可以下载或查看,没有账号?注册会员

×
  金刚石具有许多优异的性能[1,2],多用于切削工具。但由于金刚石的表面能高及化学惰性,金刚石与金属胎体的结合较弱,从而影响了金刚石切削工具的性能和寿命。表面金属化是解决这一问题的有效方法。其中磁控溅射镀膜获得的金属化金刚石的结合强度较好,但目前对溅射沉积过程中的界面物理化学过程还不很了解[3,4]。本研究利用磁控溅射法在金刚石颗粒表面沉积了150nm厚的金属Cr层,并运用俄歇电子能谱研究了Cr/金刚石界面的结合状态。  D$ C: G  ~; R9 @4 ~
1 实验方法
4 V5 l; b  n# Y$ Y/ k, U0 a1 H, g  将粒径为40~50目的人造金刚石颗粒置于旋转装置中,利用Ar气氛直流磁控溅射法在金刚石颗粒表面镀制均匀的Cr金属薄膜,Cr层厚度控制为150nm。制备室的真空度优于2×10-4Pa,溅射时的Ar气分压为0.15Pa。沉积速率为0.4 nm/s,Cr靶材及Ar气的纯度均为99.999%。
$ ]! f: U- U6 A2 S; |/ I, _  俄歇电子能谱分析在PHI-610/SAM扫描俄歇电子能谱仪上进行。采用单通道CMA能量分析器,能量分辨率0.3%,同轴电子枪的分析电压为3.0kV,电子束入射角为60°,分析室真空度优于2×10-7Pa。Ar离子枪溅射速率经热氧化SiO2校准为30nm/min。SEM实验在CSM950扫描电子显微镜上进行。其二次电子像的分辨率优于5 nm。
/ @4 z: Y3 X  q+ @/ W/ K2 实验结果与讨论9 c$ d  N+ a6 y. k+ G* b
2.1 磁控溅射法制备Cr/金刚石样品的表观形貌/ {6 q+ j+ `' D  U/ n
  镀Cr膜前后金刚石颗粒的SEM研究结果表明两者差异显著。镀Cr膜的金刚石颗粒表面均匀分布着许多细小的白斑,扫描电镜的能谱分析表明此处的Cr含量明显高于黑色区域,说明在Cr膜的沉积过程中部分金属聚集并形成岛状结构。4 Z+ b( u( s* q$ l% |# u/ |! R
2.2 Cr/金刚石样品制备过程中的界面扩散
% i! d3 e+ a8 J$ W5 v, Y0 w  图1为Cr/金刚石样品的俄歇深度剖析图。可见,金属Cr膜的厚度约为150nm,其与金刚石的界面层宽度约为65nm,比蒸发镀膜产生的界面层宽得多,说明Cr/金刚石之间发生了界面扩散作用。这是由于溅射沉积过程中,高能Cr原子轰击金刚石表面并产生部分“注入”效应而导致金属Cr向金刚石基底扩散。
" G9 A/ `: }1 }  c& g6 h 2008-08-21-13-58-59631.gif ( c3 S; L* a3 I8 u; |
图1 Cr/金刚石原始样品的俄歇深度剖析结果$ r6 x: B& X  t/ D9 O' Q
Fig.1 The AES depth profile spectrum of
5 P  v7 m) a# l3 Vun-annealed Cr/diamond particle6 W/ B+ S. T0 }) [: S* i" O
  表面层的氧主要来源于表面吸附及Cr的自然氧化层,因而含量较高。由于在金刚石颗粒表面制备的Cr层较薄并具有较多结构缺陷,使得表面的部分吸附氧可以扩散进入膜层内部,同时在金属Cr膜的沉积过程中,由于真空中存在残余的氧气或水汽,所以在膜层中也可产生少量的残留氧。这种氧的含量低且基本不随薄膜的深度而变化。在深度剖析图中,虽然发生了界面扩散作用并形成了较宽的界面扩散层,但并没有形成化学计量比的碳化物层。! ~' Z. i/ V7 n. Y
2.3 Cr/金刚石原始样品的界面反应产物研究
$ \. v9 N0 u( U8 D& C! D  俄歇线形分析可研究各元素在薄膜层中的化学状态,从而推断界面化学反应情况、确定界面反应生成的物种[5~7]。0 K: w, \0 O, Q! y2 Q
  图2为原始样品的C KLL俄歇线形谱,其中金刚石标准物的峰位于269.1eV处,碳化物的俄歇峰有3个,分别位于249.6eV,257.9eV和267.0eV。样品表面C的俄歇峰位于260.0eV处,形状与金刚石标准样的十分相似,没有峰形迭加的迹象。表面的碳峰主要由吸附的C污染所产生(由于Ar+的溅射会使金刚石石墨化,因而所示金刚石标准样实际上是石墨化的金刚石)。
+ h, w3 v, v3 b. }% W* {/ l 2008-08-21-13-59-08662.gif
9 I: g' Z0 ]/ M; n$ v图2 原始样品不同深度处的C KLL线形谱
. I3 Z2 ~* k* f) l4 UFig.2 The line shape of C KLL in various
4 n2 z# O+ S, E" Edepth of Cr/diamond deposited sample7 r4 t/ C5 `+ s9 n
  在靠近Cr层的Cr/金刚石界面处(溅射3.5min),C的俄歇线形与表面处有显著差异。在249.6eV和257.9eV处出现了两个微弱峰,其峰形及峰位与碳化物的十分吻合;267.0eV处的峰表现出了碳化物和单质碳迭加峰的特征,其中碳化物的相对含量更高些。溅射4.2min后,碳的俄歇线形比较接近金刚石标准物,但249.6eV和257.9eV位置处有小凸起,大于260 eV峰的位置也略在动能高处,体现出碳化物的特征。这说明该峰仍为碳化物和单质碳的复合峰,但单质碳的相对比例远高于碳化物。溅射5.2min后,碳的俄歇峰形同溅射4.2min后的峰相比在位置和形状上都更接近于金刚石,证明单质碳的比例占绝对优势。尽管此时还未到达金刚石本体,但已经没有碳化物存在。在界面层,碳化物主要来自于界面化学反应,而单质碳则由金刚石基底的扩散作用产生。% V' @5 X% O" v5 M7 _
  由此可见,在Cr/金刚石原始样品的制备过程中,发生了较为明显的界面扩散,但化学反应的程度较小。在界面区,当Cr的含量较高时,碳主要以金属碳化物的形式存在,当Cr含量较低时,C则主要以单质形式存在。
% F$ t8 Y6 D. {- a* U  图3为Cr LM23M4的俄歇线形谱,各标准物的俄歇峰位置如图所标。表面处Cr的俄歇峰形较宽,其俄歇线形不同于任何一种标准物。对于该峰无法推测其具体物种,只能认为是多种物质的混合物。但其峰形与氧化物的相差很多,说明表面的Cr并不主要以氧化物的状态存在,表面大量的氧主要来自于吸附的污染。溅射3.5min后,样品的俄歇峰形与金属Cr的极为相似,即Cr多以单质形式存在。溅射4.2min后,样品的峰形与单质Cr的明显不同,峰位偏低且在480eV处有小凸起,说明该峰为金属和碳化物的迭加峰。溅射5.5min后,样品480eV处的小峰更加明显,485eV附近的峰继续移向俄歇低动能处且峰形更加变宽,表明碳化物的含量大大增加。此时的深度位于接近金刚石本体,C的含量很高,但Cr并没有完全转变成金属碳化物,这说明尽管样品已经发生了较为显著的界面扩散,但界面反应程度较轻。
' a7 q; X) Y: w 2008-08-21-13-59-18772.gif
( ^( ?4 P4 @) n4 `5 Q# m/ i% s( ~( H图3 原始样品不同深度处的Cr LM23M4线形谱
$ J7 _+ r# j, |0 k; E+ z: h% [& @) sFig.3 The line shape of Cr LM23M4 in8 |& J  Y4 t+ K. J" e
various depth of Cr/diamond deposited sample
( P  o( h  K: l  n: t6 o9 |5 \6 c  图4为Cr的LM1M4俄歇线形谱。在该能量段内金属单质和碳化物的俄歇线形很接近。可以看到,样品的俄歇线形都与氧化物的不同,因而样品中Cr的氧化物含量都很少。图5为Cr的MVV俄歇线形谱。在该能量段内氧化物比碳化物和金属单质的俄歇跃迁强很多,所以此时样品的峰形和峰强并不能反映各物种量的多少。由图可见,样品的俄歇峰都处于氧化物和碳化物之间且峰形较宽,表明这两种化合物同时存在。由该图可以断定金属镀膜中和界面区内始终存在着少量金属氧化物。
9 r0 s/ e8 l9 ^1 d 2008-08-21-13-59-26965.gif + b5 o6 b# s) M  u0 P" X
图4 不同深度处的Cr LM1M4线形谱
: V- w( |$ O8 H) a4 JFig.4 The line shape of Cr LM1M4 in various
0 `/ J8 X0 ^7 N  ~depth of Cr/diamond deposited sample
& u, v4 s# L0 y1 F1 A 2008-08-21-13-59-35839.gif
7 [, C9 b5 Y+ f# G. t6 E8 a' r- _! r图5 原始样品不同深度处的Cr MVV线形谱
/ t7 z+ i& {0 z/ {7 ^' YFig.5 The line shape of Cr MVV in various
) s' T0 j3 u) Q6 k4 Q9 ?7 H0 mdepth of Cr/diamond deposited sample
/ Q& e& k" h: I4 [. c% I# j  可见,磁控溅射法镀膜使Cr/金刚石发生较为明显的界面扩散作用和微弱的界面化学反应。界面扩散反应的推动力主要为沉积原子Cr所具有的动能。1 U' L1 e$ r4 {" A: U7 y# Q7 J
2.4 溅射功率对界面扩散反应的影响5 X- U& J  Y7 x* P4 s
  以不同溅射功率镀膜的样品的深度剖析图中,形成1∶1混合物层的深度和界面宽度与溅射功率的关系如下表所示。从中可见,随溅射功率增大,Cr/金刚石的界面宽度相应增加,表明增大溅射功率可促进Cr/金刚石间的界面扩散;等比点变深,表明Cr的扩散作用加强。
4 e0 l- y# z: `0 N$ @表 溅射功率对界面扩散反应的影响
! S; s3 V. F- ?) [8 ~) E' fTable   The influence of sputtering power
7 w+ U4 t0 l! K' Xon the interface diffusion and reaction
$ D5 }- t9 m4 P, G* g+ a7 u; ^) B功率/W
, ^( Z% J6 p, f) M) q1 [200
, K( N/ K' P: s* l3004 B/ Q9 d0 Y* j/ k8 e: }
350
; _& P: C. }" V* V等比点/min
2 D+ k( p" `! M# z8 A3.2( k; ~! v6 v7 [9 Q8 ]
3.3
- V# L( Y! f9 [  j# f7 m( t4 M3.5
" n: Y3 Q' Q* r$ _界面宽度/min
* f1 r& I4 G% r; K( a4 i; R1.75; b% g4 B  s! r7 T! O! l1 H% P
2.07 R0 |- U: y4 \, {# Q! t
2.22 i  e0 A9 Q6 _
  从Cr膜表面到金刚石本体,1∶1点和界面层终止深度随功率增大而逐渐深入,且随功率增加前者深入的速度比后者快,说明功率对Cr的扩散影响更大。这是因为提高溅射功率可以产生两个效应。其一,使基片温度升高,加快Cr/金刚石间扩散的速率,但此效应不显著,因而它实际可引起固体分子间的扩散作用是微乎其微的;其二,增强“注入”效应,这是功率增加引起界面层加宽的主要原因。溅射功率增大提高了靶材出射粒子的动能,使得粒子在基底中可以克服较多的分子间作用力而行驶更长的距离,在宏观上就表现为界面宽度增加,且界面向基底中推进。由于这种现象取决于溅射沉积原子的动能,故对于C原子扩散的促进作用较小。同时,具有较高能量的Cr可以和金刚石中的碳原子反应在界面上形成金属碳化物。
/ \' r3 r0 x1 ^) T1 a0 Z! S- R3 结论
7 T" x- y) G! Q7 r1 Q% J* e' a) v  运用磁控溅射法在金刚石颗粒表面沉积了150nm厚的Cr金属膜。样品在镀膜中就发生了显著的界面扩散反应,在界面处生成了Cr2C3金属碳化物。界面扩散反应的源动力是溅射沉积原子的高动能。增加溅射沉积功率可以大大促进Cr的扩散作用,从而增强界面扩散反应。耐磨焊条
, U! v  y2 {3 s$ h( U文章关键词:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网

QQ|Archiver|手机版|小黑屋|磨削技术网 ( 苏ICP备12056899号-1 )

GMT+8, 2025-4-23 13:28 , Processed in 0.145964 second(s), 26 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表